Patents by Inventor Naoko Takei

Naoko Takei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140042895
    Abstract: A lighting device is provided with a lighting unit including a light emitting element and fluorescent bodies, which emit light of different wavelengths when excited by light from the light emitting element. When a peak output value of emitted light is 100% in a range of 440-465 nm, the lighting unit emits light having an output value at 500 nm that is 35%-55%, an output value at 550 nm that is 45%-80%, an output value at 600 nm that is 45%-75%, and an output value at 640 nm that is 50%-80%. The lighting unit emits light having a color temperature of 4500-5500 K and with the output value at 640 nm in a range of 100%-120% relative to the output value at 600 nm and in a range of 85%-130% relative to the output value at 550 nm.
    Type: Application
    Filed: July 29, 2013
    Publication date: February 13, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Naoko TAKEI, Kouji NISHIOKA, Sayaka NISHI, Takashi SAITO
  • Patent number: 8587190
    Abstract: An illumination device includes an irradiation unit having a light emitting element and fluorescent bodies excited by the light from the light emitting element to radiate light of different wavelengths. The irradiation unit irradiates composite light of blue, green and red lights having half value widths of 20-40 nm, 110-150 nm and 80-110 nm and peak wavelengths of 440-465 nm, 545-555 nm and 630-650 nm, respectively. If the output value of the light in a wavelength 435-465 nm is assumed to be 100%, the output values of the lights having wavelengths of 490, 530 and 639 nm fall within 46-56%, 59-77% and 75-93%, respectively. The ratio of the output value of the light of 630 nm to that of the light of 530 nm falls within 73-86%.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: November 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Naoko Takei, Kouji Nishioka, Sayaka Yamaguchi, Takashi Saito
  • Patent number: 8546823
    Abstract: A light emitting device includes a plurality of solid-state light emitting elements mounted on a substrate; and a wavelength converting unit covering the solid-state light emitting elements, the wavelength converting unit containing fluorescent materials. The solid-state light emitting elements include inner solid-state light emitting elements arranged in a central position of the substrate and outer solid-state light emitting elements arranged outwardly of the inner solid-state light emitting elements, and the wavelength converting unit is configured such that a probability that light propagating through the wavelength converting unit is brought into contact with the fluorescent materials in a portion of the wavelength converting unit covering the outer solid-state light emitting elements is lower than a probability that light propagating through the wavelength converting unit is brought into contact with the fluorescent materials in other portions.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 1, 2013
    Assignee: Panasonic Corporation
    Inventors: Naoko Takei, Kouji Nishioka
  • Publication number: 20130241391
    Abstract: A light emitting device includes a first luminous body having a first light source and a long wavelength cut-off filter; and a second luminous body generating light of different color from that of the first luminous body, and having a second light source and a short wavelength cut-off filter. The first and the second light source emit light in a first wavelength range and a second wavelength range extending to a longer wavelength side than the first wavelength range while overlapping with the first wavelength range, respectively. The long and the short wavelength cut-off filter cut off light having a wavelength longer than a first set wavelength and shorter longer than a second set wavelength, respectively. Thus, light emitted from the first luminous body and light emitted from the second luminous body are mixed together, such that light in between the first set wavelength and the second set wavelength is reduced.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 19, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: NAOKO TAKEI
  • Publication number: 20130234622
    Abstract: A light emitting device includes multiple types of solid state light emitting elements having different peak wavelengths from each other; and a wavelength converter including phosphors that convert a wavelength of light emitted from each of the solid state light emitting elements. The phosphors include two or more of a first phosphor, a second phosphor, and a third phosphor. The first phosphor is excited by light emitted from a solid state light emitting element having a relatively long peak wavelength, and the second phosphor is excited by light emitted from a solid state light emitting element having a relatively short peak wavelength. The third phosphor is excited by light emitted from any of the solid state light emitting elements.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 12, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Kenichiro TANAKA, Naoko TAKEI
  • Publication number: 20130044456
    Abstract: An illumination device includes an irradiation unit having a light emitting element and fluorescent bodies excited by the light from the light emitting element to radiate light of different wavelengths. The irradiation unit irradiates composite light of blue, green and red lights having half value widths of 20-40 nm, 110-150 nm and 80-110 nm and peak wavelengths of 440-465 nm, 545-555 nm and 630-650 nm, respectively. If the output value of the light in a wavelength 435-465 nm is assumed to be 100%, the output values of the lights having wavelengths of 490, 530 and 639 nm fall within 46-56%, 59-77% and 75-93%, respectively. The ratio of the output value of the light of 630 nm to that of the light of 530 nm falls within 73-86%.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 21, 2013
    Applicant: Panasonic Corporation
    Inventors: Naoko TAKEI, Kouji NISHIOKA, Sayaka YAMAGUCHI, Takashi SAITO
  • Publication number: 20120319143
    Abstract: A light emitting device includes a plurality of solid-state light emitting elements mounted on a substrate; and a wavelength converting unit covering the solid-state light emitting elements, the wavelength converting unit containing fluorescent materials. The solid-state light emitting elements include inner solid-state light emitting elements arranged in a central position of the substrate and outer solid-state light emitting elements arranged outwardly of the inner solid-state light emitting elements, and the wavelength converting unit is configured such that a probability that light propagating through the wavelength converting unit is brought into contact with the fluorescent materials in a portion of the wavelength converting unit covering the outer solid-state light emitting elements is lower than a probability that light propagating through the wavelength converting unit is brought into contact with the fluorescent materials in other portions.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 20, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Naoko TAKEI, Kouji NISHIOKA
  • Patent number: 8294177
    Abstract: A light emitting device (1) includes a LED chip (10) as well as a mounting substrate (20) on which the LED chip (10) is mounted. Further, the light emitting device (1) includes a cover member (60) and a color conversion layer (70). The cover member (60) is formed to have a dome shape and is made of a translucency inorganic material. The color conversion layer (70) is formed to have a dome shape and is made of a translucency material (such as, a silicone resin) including a fluorescent material excited by light emitted from the LED chip (10) and emitting light longer in wavelength than the light emitted from the LED chip (10). The cover member (60) is attached to the mounting substrate (20) such that there is an air layer (80) between the cover member (60) and the mounting substrate (20). The color conversion layer (70) is superposed on a light-incoming surface or a light-outgoing surface of the cover member (60).
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 23, 2012
    Assignee: Panasonic Corporation
    Inventors: Keiichi Yamazaki, Naoko Takei, Tomoyuki Nakajima
  • Publication number: 20120119640
    Abstract: A light emitting device includes a first solid light-emitting element including a first light source for emitting blue light and a first fluorescent body excited by the blue light from the first light source to convert the blue light to light having a peak at wavelength between 630 nm and 680 nm and a second solid light-emitting element including a second light source for emitting blue light and a second fluorescent body excited by the blue light from the second light source to convert the blue light to light having a peak at wavelength between 500 nm and 550 nm.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 17, 2012
    Applicant: Panasonic Electric Works Co., Ltd.
    Inventors: KOUJI NISHIOKA, Naoko Takei
  • Publication number: 20100237375
    Abstract: A light emitting device (1) includes a LED chip (10) as well as a mounting substrate (20) on which the LED chip (10) is mounted. Further, the light emitting device (1) includes a cover member (60) and a color conversion layer (70). The cover member (60) is formed to have a dome shape and is made of a translucency inorganic material. The color conversion layer (70) is formed to have a dome shape and is made of a translucency material (such as, a silicone resin) including a fluorescent material excited by light emitted from the LED chip (10) and emitting light longer in wavelength than the light emitted from the LED chip (10). The cover member (60) is attached to the mounting substrate (20) such that there is an air layer (80) between the cover member (60) and the mounting substrate (20). The color conversion layer (70) is superposed on a light-incoming surface or a light-outgoing surface of the cover member (60).
    Type: Application
    Filed: December 5, 2008
    Publication date: September 23, 2010
    Applicant: Panasonic Electric Works Co., Ltd.
    Inventors: Keiichi Yamazaki, Naoko Takei, Tomoyuki Nakajima