Patents by Inventor Naoto Sonoda

Naoto Sonoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150153713
    Abstract: Servo control system includes a first repeat control unit for a first servo motor based on a reference angle and a first position error between a swing command and a position of the first servo motor, a multiplication unit which multiplies the swing command by a ratio according to a tilt angle of an inclined surface of a material to be ground to calculate a swing command after multiplication, and a second repeat control unit for a second servo motor based on a reference angle and second position error between the swing command after multiplication and a position of the second servo motor. The first and the second position error are respectively corrected, and driving of the first and the second servo motors are controlled based on the corrected first and second position error, thereby grinding the inclined surface of the material.
    Type: Application
    Filed: November 28, 2014
    Publication date: June 4, 2015
    Inventor: Naoto SONODA
  • Patent number: 9008821
    Abstract: A servo control system capable of using an angle-based synchronization learning control, even when a reference position is not given, while maintaining the advantage of the angle-based synchronization method. The servo control system has X-, y- and z-axes servo controllers, each configured to control x-, y- and z-axes servomotors, respectively. Each of x- and y-axes servo controllers has a reference signal generating part configured to generate a reference signal which monotonically increases or varies in one direction, based on the position command of each axis transmitted from a higher-level controller.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: April 14, 2015
    Assignee: FANUC Corporation
    Inventors: Tadashi Okita, Yukio Toyozawa, Kazuomi Maeda, Naoto Sonoda
  • Publication number: 20150008861
    Abstract: A motor control device for controlling a motor which drives a control target, includes: a speed feedback control unit which generates a pre-correction torque command for controlling such that an actual speed of the control target follows a speed command which is input; an inverse model calculation unit which calculates a coefficient of an inverse model with a transfer function inversed from a transfer function of the control target by using the speed command and the pre-correction torque command; a torque correction value generating unit which generates a torque correction value by using the speed command and the coefficient of the inverse model; and a torque command generating unit which generates a torque command for the motor which drives the control target by using the pre-correction torque command and torque correction value.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 8, 2015
    Inventor: Naoto SONODA
  • Patent number: 8903518
    Abstract: A control apparatus for a motor includes, a position detection unit which detects the position of a driven body, a positional error acquiring unit which acquires for each sampling cycle a positional error representing a deviation between the position command given to the motor and the position of the driven body detected by the position detection unit, a dead-zone processing unit which outputs the positional error by replacing the positional error with zero if the positional error acquired by the positional error acquiring unit lies within a predetermined dead-zone range, and a repetitive control unit which calculates an amount of correction such that the positional error output from the dead-zone processing unit is reduced to zero, and wherein: the motor is controlled based on the positional error acquired by the positional error acquiring unit and the amount of correction calculated by the repetitive control unit.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: December 2, 2014
    Assignee: FANUC Corporation
    Inventors: Naoto Sonoda, Yukio Toyozawa, Yasusuke Iwashita
  • Publication number: 20140333249
    Abstract: A frequency component extracting unit (15) extracts a frequency component included in a control signal at a first frequency step size. A frequency detection unit (16) detects, from the extracted frequency component, a frequency corresponding to a natural frequency of a target object constituted of a motor (3) and a driven member (4). A frequency step size setting unit (17) sets a second frequency step size smaller than the first frequency step size. A center frequency changing unit (18) increases or decreases a center frequency of a variable bandstop filter (13) at the second frequency step size in order to output a control signal after the variable bandstop filter (13) removes a frequency component corresponding to the natural frequency after the change from the control signal.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: FANUC CORPORATION
    Inventor: Naoto SONODA
  • Patent number: 8872463
    Abstract: A sinusoidal command is added to a torque command of a controller to acquire a velocity and a current value of an electric motor. An estimated coupling torque value is calculated by calculating an input torque value from the current value and a torque constant of the electric motor and further calculating a coupling torque value from a velocity difference, motor inertia, and the input torque. An estimated torque error is then calculated from the estimated coupling torque value and the coupling torque value, and inertia, friction, and a spring constant are estimated from the estimated torque error, the velocity, and the coupling torque value.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: October 28, 2014
    Assignee: Fanuc Corporation
    Inventors: Naoto Sonoda, Yukio Toyozawa
  • Publication number: 20140265960
    Abstract: A control system includes a current control unit providing, in accordance with the magnetic pole position of a rotor in which permanent magnets are disposed, a first current command to a first excitation phase of a stator winding and providing a second current command to a second excitation phase, a current error calculator calculating a current error which is a difference between a current flowing through the motor during the first period and the first current command or a difference between a current flowing through the motor during the second period and the second current command, and an abnormality detection and diagnosis unit detecting an abnormality based on the speed, the direction of movement and the amount of movement of the motor and the magnitude of the current error.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: FANUC CORPORATION
    Inventor: Naoto SONODA
  • Patent number: 8766586
    Abstract: A magnetic pole position detecting device includes a calculating unit for correcting a magnetic pole position detected by a magnetic pole position detecting unit. In this magnetic pole position detecting device, an additional phase is added to the magnetic pole position detected by the magnetic pole position detecting unit, in order to move a rotor. In relation to a movement amount before and after this movement, a movement amount detected by the magnetic pole position detecting unit is compared with a movement amount detected by an encoder. When a difference between them is larger than a predetermined threshold, a process of detecting the magnetic pole position is determined as false detection.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: July 1, 2014
    Assignee: Fanuc Corporation
    Inventors: Naoto Sonoda, Masato Aochi
  • Patent number: 8754601
    Abstract: The controller of the synchronous motor of the present invention includes: an allowable energy value acquisition unit (4) which acquires an allowable energy value until which a dynamic brake resistor, which is for short-circuiting the input terminal of the synchronous motor at a time of failure, can bear; an inertia estimation unit (6) which estimates inertia of a driven object based on a speed value and an electric current value; an allowable maximum speed calculation unit (5) which calculates an allowable maximum speed value of the synchronous motor from the inertia and the allowable energy value; and a speed control unit (2) which controls the amplifier for operating the synchronous motor at a predetermined commanded speed, in which the speed control unit (2) acquires the allowable maximum speed value from the allowable maximum speed calculation unit (5), and limits the commanded speed to the allowable maximum speed value or lower.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: June 17, 2014
    Assignee: Fanuc Corporation
    Inventors: Naoto Sonoda, Yasusuke Iwashita
  • Publication number: 20140152204
    Abstract: A magnetic pole position detector includes, a voltage command unit that generates high-frequency voltage command in a dq coordinate system, a three-phase transformation unit that transforms the high-frequency voltage command in the dq coordinate system to high-frequency voltage command in a three-phase coordinate system by using an estimated magnetic pole position, a current detection unit that detects three-phase current fed from a power converter for generating drive power, a dq transformation unit that transforms the detected three-phase current to current in the dq coordinate system by using the estimated magnetic pole position, an estimated magnetic pole position calculation unit that calculates a new estimated magnetic pole position to be used in three-phase dq transformations, and a magnetic pole position confirmation unit that confirms that, when converging on a certain position, the estimated magnetic pole position is the magnetic pole position at the time when the synchronous motor is started.
    Type: Application
    Filed: November 25, 2013
    Publication date: June 5, 2014
    Applicant: FANUC CORPORATION
    Inventors: Naoto Sonoda, Yukio Toyozawa
  • Patent number: 8680805
    Abstract: A control device that drives one driven object by a first motor and a second motor. A first processor has a first correction amount calculation unit configured to calculate an amount of correction for a torque command to the first motor based on a speed value difference between a speed value of the first motor and a speed value of the second motor in order to suppress vibrations. A second processor has a second correction amount calculation unit configured to calculate an amount of correction for a torque command to the second motor based on a speed value difference between a speed value of the first motor and a speed value of the second motor in order to suppress vibrations.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: March 25, 2014
    Assignee: Fanuc Corporation
    Inventors: Naoto Sonoda, Yasusuke Iwashita
  • Patent number: 8633663
    Abstract: An estimated torque constant calculation unit calculates an estimated torque constant relating to the permanent magnet synchronous motor from a current representative value and an acceleration representative value acquired from a plurality of current values and a plurality of acceleration values in the same operation state over a plurality of periods of a sinusoidal command signal and a predetermined inertia relating to the permanent magnet synchronous motor. A demagnetization detection unit detects whether or not irreversible demagnetization has occurred in the permanent magnet of the permanent magnet synchronous motor based on a difference between the estimated torque constant and a predetermined torque constant relating to the permanent magnet synchronous motor.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: January 21, 2014
    Assignee: Fanuc Corporation
    Inventors: Naoto Sonoda, Yasusuke Iwashita
  • Publication number: 20130342143
    Abstract: The controller of the synchronous motor of the present invention includes: an allowable energy value acquisition unit (4) which acquires an allowable energy value until which a dynamic brake resistor, which is for short-circuiting the input terminal of the synchronous motor at a time of failure, can bear; an inertia estimation unit (6) which estimates inertia of a driven object based on a speed value and an electric current value; an allowable maximum speed calculation unit (5) which calculates an allowable maximum speed value of the synchronous motor from the inertia and the allowable energy value; and a speed control unit (2) which controls the amplifier for operating the synchronous motor at a predetermined commanded speed, in which the speed control unit (2) acquires the allowable maximum speed value from the allowable maximum speed calculation unit (5), and limits the commanded speed to the allowable maximum speed value or lower.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 26, 2013
    Inventors: Naoto SONODA, Yasusuke IWASHITA
  • Publication number: 20130307452
    Abstract: A magnetic pole position detecting device includes a calculating unit for correcting a magnetic pole position detected by a magnetic pole position detecting unit. In this magnetic pole position detecting device, an additional phase is added to the magnetic pole position detected by the magnetic pole position detecting unit, in order to move a rotor. In relation to a movement amount before and after this movement, a movement amount detected by the magnetic pole position detecting unit is compared with a movement amount detected by an encoder. When a difference between them is larger than a predetermined threshold, a process of detecting the magnetic pole position is determined as false detection.
    Type: Application
    Filed: April 3, 2013
    Publication date: November 21, 2013
    Applicant: Fanuc Corporation
    Inventors: Naoto SONODA, Masato AOCHI
  • Publication number: 20130106336
    Abstract: A control apparatus for a motor includes, a position detection unit which detects the position of a driven body, a positional error acquiring unit which acquires for each sampling cycle a positional error representing a deviation between the position command given to the motor and the position of the driven body detected by the position detection unit, a dead-zone processing unit which outputs the positional error by replacing the positional error with zero if the positional error acquired by the positional error acquiring unit lies within a predetermined dead-zone range, and a repetitive control unit which calculates an amount of correction such that the positional error output from the dead-zone processing unit is reduced to zero, and wherein: the motor is controlled based on the positional error acquired by the positional error acquiring unit and the amount of correction calculated by the repetitive control unit.
    Type: Application
    Filed: September 10, 2012
    Publication date: May 2, 2013
    Applicant: FANUC Corporation
    Inventors: Naoto Sonoda, Yukio Toyozawa, Yasusuke Iwashita
  • Publication number: 20130026964
    Abstract: A control device that drives one driven object by a first motor and a second motor. A first processor has a first correction amount calculation unit configured to calculate an amount of correction for a torque command to the first motor based on a speed value difference between a speed value of the first motor and a speed value of the second motor in order to suppress vibrations. A second processor has a second correction amount calculation unit configured to calculate an amount of correction for a torque command to the second motor based on a speed value difference between a speed value of the first motor and a speed value of the second motor in order to suppress vibrations.
    Type: Application
    Filed: June 13, 2012
    Publication date: January 31, 2013
    Applicant: FANUC CORPORATION
    Inventors: Naoto SONODA, Yasusuke IWASHITA
  • Publication number: 20130026959
    Abstract: An estimated torque constant calculation unit calculates an estimated torque constant relating to the permanent magnet synchronous motor from a current representative value and an acceleration representative value acquired from a plurality of current values and a plurality of acceleration values in the same operation state over a plurality of periods of a sinusoidal command signal and a predetermined inertia relating to the permanent magnet synchronous motor. A demagnetization detection unit detects whether or not irreversible demagnetization has occurred in the permanent magnet of the permanent magnet synchronous motor based on a difference between the estimated torque constant and a predetermined torque constant relating to the permanent magnet synchronous motor.
    Type: Application
    Filed: June 12, 2012
    Publication date: January 31, 2013
    Applicant: FANUC CORPORATION
    Inventors: Naoto SONODA, Yasusuke IWASHITA
  • Publication number: 20130026963
    Abstract: A sinusoidal command is added to a torque command of a controller to acquire a velocity and a current value of an electric motor. An estimated coupling torque value is calculated by calculating an input torque value from the current value and a torque constant of the electric motor and further calculating a coupling torque value from a velocity difference, motor inertia, and the input torque. An estimated torque error is then calculated from the estimated coupling torque value and the coupling torque value, and inertia, friction, and a spring constant are estimated from the estimated torque error, the velocity, and the coupling torque value.
    Type: Application
    Filed: June 11, 2012
    Publication date: January 31, 2013
    Applicant: FANUC CORPORATION
    Inventors: Naoto SONODA, Yukio TOYOZAWA
  • Patent number: 8305016
    Abstract: A control device for electric motors, capable of precisely moving one object by using two electric motors based on periodically repeated commands. The control device includes a first learning controller for calculating an amount of correction so that a positional deviation of a first electric motor is minimized, and a second learning controller for calculating an amount of correction so that a positional deviation of a second electric motor is minimized. The first and second learning controllers are independent from each other, and configured to minimize the positional deviation of the corresponding electric motor. The parameters set in the learning controllers, each defining the response of learning control of each electric motor, are equal to each other.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: November 6, 2012
    Assignee: Fanuc Ltd
    Inventors: Tadashi Okita, Yukio Toyozawa, Naoto Sonoda
  • Patent number: 8232758
    Abstract: A controller estimates Coulomb friction itself together with inertia and viscous friction, and reduces the influence of the Coulomb friction on the accuracy of the estimated inertia. In addition, the controller estimates inertia, viscous friction and Coulomb friction simultaneously with sequential adaptation in which a Fourier transformer is not used but an inverse transfer function model is used in order to minimize the estimated error. Data sampled for a predetermined time need not be accumulated, as a result, a large amount of data memory is unnecessary.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: July 31, 2012
    Assignee: Fanuc Ltd
    Inventors: Tadashi Okita, Yukio Toyozawa, Naoto Sonoda