Patents by Inventor Naoya Kato

Naoya Kato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6945093
    Abstract: A fuel vapor leakage inspection apparatus utilizes a fuel tank, an adsorption container which houses an adsorbent for adsorbing fuel vapor generated in the fuel tank, and an exhaust device for communicating between the adsorption container and an intake pipe. Furthermore, the apparatus utilizes a pressure means that pressurizes or depressurizes a fuel vapor path formed from the fuel tank through the adsorption container to the exhaust device. A leakage detection means detects leakage from the fuel vapor path after the fuel vapor path is pressurized or depressurized by the pressure means while a calculation means calculates an amount of fuel vapor adsorbed, and a control means determines if the pressure means should execute leakage inspection of the fuel vapor path in accordance with the amount of the fuel vapor calculated by the calculation means.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: September 20, 2005
    Assignees: Nippon Soken, Inc., Denso Corporation
    Inventors: Noriyasu Amano, Naoya Kato, Hideaki Itakura, Masao Kano
  • Patent number: 6912306
    Abstract: An image-processing apparatus for processing the image data input from an image-handling device and then outputting the image data to another image-handling device. The apparatus comprises a black-adaptation correction device. The black-adaptation correction device corrects the image data in consideration of the fact that adaptation to black varies from person to person, if the darkest points of the image-handling devices differ from each other. Since the image is so corrected, the colors of the images produced by the image-handling devices look almost the same in spite of the fact that the darkest points of the image-handling devices differ from each other.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: June 28, 2005
    Assignee: Sony Corporation
    Inventors: Kiyotaka Nakabayashi, Naoya Kato
  • Publication number: 20050044942
    Abstract: An apparatus detects leak in a fuel vapor treatment system which is referred to as an evaporation system. The apparatus measures a required time T2 that is required for decreasing pressure in the evaporation system from P0 to P1 while opening a base leak hole that provides known amount of leak. Then, a required time T1 that is required for decreasing pressure from P0 to P1 is measured while closing the base leak hole. The apparatus compares the required times T1 and T2 in order to detect a leak other than the base leak hole. In this process, a specified coefficient that is defined in accordance with the base leak hole is taken into consideration. It is possible to detect the leak of the evaporation system with high accuracy even when the amount of remaining fuel is extremely large.
    Type: Application
    Filed: October 15, 2004
    Publication date: March 3, 2005
    Applicants: NIPPON SOKEN, INC., DENSO CORPORATION
    Inventors: Noriyasu Amano, Hideaki Itakura, Naoya Kato, Masao Kano
  • Patent number: 6823851
    Abstract: When purge control of fuel vapor, which is released from a fuel tank and is then adsorbed and retained in a fuel adsorption layer of a canister, is performed through ON/OFF control of a purge valve, ON/OFF of a heater plate received in the canister is controlled based on a purge fuel vapor concentration estimated through air-fuel ratio control operation of an engine. In this way, a sensor for measuring the purge fuel vapor concentration of the fuel vapor conducted from the canister to an intake passage of the engine can be eliminated.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: November 30, 2004
    Assignees: Nippon Soken, Inc., Denso Corporation
    Inventors: Noriyasu Amano, Hideaki Itakura, Naoya Kato, Masao Kano
  • Publication number: 20040231829
    Abstract: There are provided heat storage means 5 which have heat storage material 52 sealed therein and exchange heat with stored fuel F in a tank 11. AS the characteristics of saturated vapor pressure of the stored fuel F are such that rate of change of the saturated vapor pressure with respect to temperature change thereof is large in high temperature range and rate of change of the saturated vapor pressure with respect to the temperature change is small in low temperature range, the effect of the heat storage material 52 for suppressing temperature rise of the stored fuel F to thereby suppress rise of the saturated vapor pressure is larger than the effect of the heat storage material 52 for suppressing temperature drop of the stored fuel F to thereby suppress a drop of the saturated vapor pressure, so that overall effect is to suppress fuel evaporation.
    Type: Application
    Filed: April 16, 2004
    Publication date: November 25, 2004
    Applicants: NIPPON SOKEN, INC., DENSO CORPORATION
    Inventors: Noriyasu Amano, Naoya Kato, Nobuhiko Koyama
  • Patent number: 6817232
    Abstract: An apparatus detects leak in a fuel vapor treatment system which is referred to as an evaporation system. The apparatus measures a required time T2 that is required for decreasing pressure in the evaporation system from P0 to P1 while opening a base leak hole that provides known amount of leak. Then, a required time T1 that is required for decreasing pressure from P0 to P1 is measured while closing the base leak hole. The apparatus compares the required times T1 and T2 in order to detect a leak other than the base leak hole. In this process, a specified coefficient that is defined in accordance with the base leak hole is taken into consideration. It is possible to detect the leak of the evaporation system with high accuracy even when the amount of remaining fuel is extremely large.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: November 16, 2004
    Assignees: Nippon Soken, Inc., Denso Corporation
    Inventors: Noriyasu Amano, Hideaki Itakura, Naoya Kato, Masao Kano
  • Patent number: 6810861
    Abstract: A shut off valve is provided in an intake line farther upstream than a throttle valve of the intake passage and farther downstream than an air cleaner. This shut off valve is opened by a signal or the like from an ECU when an engine is operating. Further, the shut off valve closes when the engine is stopped so as to suppress evaporative fuel inside the intake passage from flowing outside through the air cleaner. The evaporative fuel trapped inside the intake passage passes through a bypass passage that provides communication between the intake passage and the canister, and is then adsorbed with an adsorbent in the canister. A blow-by passage is also connected to the intake passage that is closed off by the shut off valve. Because the blow-by passage is closed off by a blow-by valve, which is closed during normal operation when the engine is stopped, sticking of the shut off valve and the throttle valve and the like due to the inflow of blow-by gas into the intake passage is inhibited.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: November 2, 2004
    Assignees: Nippon Soken, Inc., Toyoda Boshoku Corporation
    Inventors: Hideaki Itakura, Naoya Kato, Masaki Takeyama, Yoshinori Inuzuka, Minoru Honda, Kouichi Oda
  • Patent number: 6786199
    Abstract: A throttle valve is opened after stopping an engine to prevent the valve from sticking. Then, when a temperature of the valve has become lower than the polymerization temperature, the valve is closed to seal the vapor of the HCs in a surge tank downstream. Changes in the temperature of the valve are, for example, estimated based on a temperature of an intake air detected by an intake temperature sensor.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: September 7, 2004
    Assignees: Toyoda Boshoku Corporation, Nippon Soken, Inc.
    Inventors: Kouichi Oda, Masaki Takeyama, Naoya Kato, Yoshinori Inuzuka, Takashi Nishimoto
  • Patent number: 6786211
    Abstract: An intake device for an internal combustion engine has: a first intake pipe which is connected to the engine so as to conduct an intake air to the engine, and which has an opening portion that is provided in an upstream-side lower portion of the first intake pipe located at an upstream side in a flowing direction of the intake air; and a second intake pipe which has a downstream-side end portion that faces an upstream-side end portion of the first intake pipe, with a gap formed therebetween, and which conducts the intake air to the first intake pipe. An unburned gas reflux passage is provided for conducting an unburned gas from the engine to the first intake pipe. A container surrounds the gap and the opening so as to receive the unburned gas flowing from the opening portion. Thus, it becomes possible to prevent release of unburned gas into the atmosphere by performing a simple process on a conventional structure.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: September 7, 2004
    Assignees: Nippon Soken, Inc., Toyoda Boshoku Corporation
    Inventors: Masaki Takeyama, Naoya Kato, Takashi Nishimoto, Kouichi Oda
  • Publication number: 20040060343
    Abstract: A fuel vapor leakage inspection apparatus utilizes a fuel tank, an adsorption container which houses an adsorbent for adsorbing fuel vapor generated in the fuel tank, and an exhaust device for communicating between the adsorption container and an intake pipe. Furthermore, the apparatus utilizes a pressure means that pressurizes or depressurizes a fuel vapor path formed from the fuel tank through the adsorption container to the exhaust device. A leakage detection means detects leakage from the fuel vapor path after the fuel vapor path is pressurized or depressurized by the pressure means while a calculation means calculates an amount of fuel vapor adsorbed, and a control means determines if the pressure means should execute leakage inspection of the fuel vapor path in accordance with the amount of the fuel vapor calculated by the calculation means.
    Type: Application
    Filed: September 16, 2003
    Publication date: April 1, 2004
    Applicant: NIPPON SOKEN, INC.
    Inventors: Noriyasu Amano, Naoya Kato, Hideaki Itakura, Masao Kano
  • Patent number: 6707573
    Abstract: An image on the original to be printed on a print sheet Pin by a printing machine is scanned by a scanner, and the data is edited by an editing section. The edited data is converted from the data dependent on the device (printing machine) to data not dependent on the device with the use of a device profile P1 which a converter has. A luminous-environment conversion circuit compensates the data sent from the converter according to the data corresponding to surrounding light, output from a sensor S1, and data related to the paper color of the print sheet Pin, output from the sensor S2. Another luminous-environment conversion circuit compensates input data according to the paper color of a print sheet Pout in a printer or surrounding-light data, output from sensors S3 and S4. Another converter converts the output of the luminous-environment conversion circuit to data dependent on the printer and the data is printed on the print sheet Pout by the printer.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: March 16, 2004
    Assignee: Sony Corporation
    Inventors: Masahiko Ito, Naoya Kato
  • Patent number: 6698403
    Abstract: An absorbent, such as, for example, an active carbon, is provided in an intake air passage, for example, in an air cleaner, to efficiently adsorb fuel vapor. To ensure that fuel vapor adsorbed into the intake air passage can be efficiently desorbed even when there is only a small amount of the intake air, an intake throttle valve is provided upstream of the adsorbent and an opening of the intake throttle valve is throttled so as to decompress an area near the adsorbent. Desorption of fuel vapor also can be efficiently promoted by using a heater to directly heat the adsorbent in the intake air passage or by heating the intake air to indirectly heat the adsorbent.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: March 2, 2004
    Assignees: Toyoda Boshoku Corporation, Nippon Soken, Inc.
    Inventors: Minoru Honda, Kouichi Oda, Naoya Kato, Masaki Takeyama, Yoshinori Inuzuka, Noriyasu Amano, Takashi Nishimoto
  • Patent number: 6699310
    Abstract: An HC adsorbing sheet inside an air cleaner is disposed such that a large amount of activated carbon is contained on the side of an engine and that a small amount of activated carbon is contained on the other side of the engine. Thus, the HC adsorbing sheet can efficiently adsorb evaporative fuel. That is, by changing the amount of activated carbon contained in accordance with differences in concentration of evaporative fuel, it becomes possible to prevent the pressure loss in an intake system from increasing. On the other hand, one end of a second intake pipe extends to a region where the amount of activated carbon contained in the HC adsorbing sheet is large, whereby it becomes possible to concentratively supply activated carbon with intake air in the region where the large amount of activated carbon is contained. Therefore, the efficiency in purging evaporative fuel can be prevented from declining.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: March 2, 2004
    Assignees: Toyoda Boshoku Corporation, Nippon Soken, Inc.
    Inventors: Kouichi Oda, Takanobu Kawano, Masaki Takeyama, Naoya Kato
  • Patent number: 6695895
    Abstract: A fuel vapor handling apparatus supplies a purging air to a canister by using a purge pump and purges fuel desorbed from the canister into an intake pipe. A controller intermittently operates the purge so that the canister internal temperature recovers from a reduced level caused by the latent heat of vaporization of fuel during an operating period of the purge pump. Therefore, desorption of fuel from the canister during an operating period is facilitated. Since the actual operating time of the purge pump is reduced, the life of a motor that is a power unit of the purge pump becomes longer.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: February 24, 2004
    Assignees: Toyota Jidosha Kabushiki Kaisha, Nippon Soken, Inc.
    Inventors: Yoshihiko Hyodo, Mamoru Yoshioka, Takanobu Kawano, Hideaki Itakura, Masaki Takeyama, Naoya Kato
  • Publication number: 20040031470
    Abstract: An intake device for an internal combustion engine has: a first intake pipe which is connected to the engine so as to conduct an intake air to the engine, and which has an opening portion that is provided in an upstream-side lower portion of the first intake pipe located at an upstream side in a flowing direction of the intake air; and a second intake pipe which has a downstream-side end portion that faces an upstream-side end portion of the first intake pipe, with a gap formed therebetween, and which conducts the intake air to the first intake pipe. An unburned gas reflux passage is provided for conducting an unburned gas from the engine to the first intake pipe. A container surrounds the gap and the opening so as to receive the unburned gas flowing from the opening portion. Thus, it becomes possible to prevent release of unburned gas into the atmosphere by performing a simple process on a conventional structure.
    Type: Application
    Filed: June 9, 2003
    Publication date: February 19, 2004
    Applicants: NIPPON SOKEN, INC., TOYODA BOSHOKU CORPORATION
    Inventors: Masaki Takeyama, Naoya Kato, Takashi Nishimoto, Kouichi Oda
  • Patent number: 6689196
    Abstract: A fuel adsorption layer formed in a canister is partitioned into an upper adsorption layer and a lower adsorption layer by a partition plate in which a heater is embedded. The relation between a heating value of the heater and thickness X of the upper and lower adsorption layers is set so that the temperature of a part closest to the heater heating face of the fuel adsorption layer is lower than a fire point of the fuel, and the temperature of a part farthest from the heater heating face is higher than the boiling point of the fuel. With the configuration, by heating the fuel adsorption layer by the heater, the desorption performance of activated carbon is improved, and almost all of the fuel vapors adsorbed can be desorbed.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: February 10, 2004
    Assignees: Nippon Soken Inc., Denso Corporation
    Inventors: Noriyasu Amano, Hideaki Itakura, Masaki Takeyama, Naoya Kato, Nobuhiko Koyama
  • Patent number: 6634343
    Abstract: An evaporated fuel adsorbed by an adsorbing member of a canister is compulsively desorbed by driving of a purge pump and is introduced into an intake passage of an internal combustion engine. In this instance, intake pulsation of the intake passage of an internal combustion engine is introduced into a driving chamber of the purge pump and a partition is moved, so that the capacity of a pump chamber is varied. In other words, the purge pump conducts its pump operation by utilizing the movement of the partition resulting from the introduction of intake pulsation of the intake passage of the internal combustion engine, and a power loss can be thus reduced. When a pressure difference is small between the intake pressure inside the intake passage of the internal combustion engine and the pressure on the canister side, too, a desired purge flow rate can be secured in accordance with the operating condition of the internal combustion engine.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: October 21, 2003
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Masao Kano, Nobuhiko Koyama, Hideki Kato, Noriyasu Amano, Hideaki Itakura, Naoya Kato
  • Publication number: 20030192370
    Abstract: An apparatus detects leak in a fuel vapor treatment system which is referred to as an evaporation system. The apparatus measures a required time T2 that is required for decreasing pressure in the evaporation system from P0 to P1 while opening a base leak hole that provides known amount of leak. Then, a required time T1 that is required for decreasing pressure from P0 to P1 is measured while closing the base leak hole. The apparatus compares the required times T1 and T2 in order to detect a leak other than the base leak hole. In this process, a specified coefficient that is defined in accordance with the base leak hole is taken into consideration. It is possible to detect the leak of the evaporation system with high accuracy even when the amount of remaining fuel is extremely large.
    Type: Application
    Filed: April 8, 2003
    Publication date: October 16, 2003
    Inventors: Noriyasu Amano, Hideaki Itakura, Naoya Kato, Masao Kano
  • Patent number: 6628822
    Abstract: In the present invention, RGB data outputted by a transmission side CRT monitor 3 is converted by a profile P1 stored in a converter 11 into XYZ data which is corrected in agreement with the viewing conditions on the transmitting side by having reference to detection signals from sensors S1, S2 so that the data is outputted as L+M+S+ data. A viewing condition conversion circuit 15 refers to detection signals from sensors S3, S4 to correct the L+M+S+ data in agreement with the viewing conditions on the reception side to supply the resulting XYZ data to the converter 16. The converter 16 refers to a profile P4 to convert the XYZ data into RGB data which is outputted to a CRT monitor 4. This equates color appearance of a picture on an input device on the transmission side to that of a picture on an output device on the reception side.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: September 30, 2003
    Assignee: Sony Corporation
    Inventors: Kiyotaka Nakabayashi, Naoya Kato
  • Publication number: 20030140901
    Abstract: When purge control of fuel vapor, which is released from a fuel tank and is then adsorbed and retained in a fuel adsorption layer of a canister, is performed through ON/OFF control of a purge valve, ON/OFF of a heater plate received in the canister is controlled based on a purge fuel vapor concentration estimated through air-fuel ratio control operation of an engine. In this way, a sensor for measuring the purge fuel vapor concentration of the fuel vapor conducted from the canister to an intake passage of the engine can be eliminated.
    Type: Application
    Filed: January 27, 2003
    Publication date: July 31, 2003
    Inventors: Noriyasu Amano, Hideaki Itakura, Naoya Kato, Masao Kano