Patents by Inventor Naoya Kobayashi

Naoya Kobayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8697438
    Abstract: Provided is a cell cultivation method in which the cell is cultured using a peptide hydrogel as a scaffold, for carrying out high-dimensional culture of a cell such as porcine hepatocyte, human hepatocyte, porcine pancreatic islet or human pancreatic islet for a long period under conditions where cell survival, cell morphology and cell functions are maintained. Also provided are a cell culture including a cell and a peptide hydrogel obtained by the above-described cultivation method, a bioreactor including the cell culture, and a cell preparation including the cell culture.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 15, 2014
    Assignees: National University Corporation Okayama University, 3-D Matrix, Ltd.
    Inventors: Naoya Kobayashi, Noriaki Tanaka
  • Publication number: 20140085023
    Abstract: The present invention relates to ferromagnetic particles capable of exhibiting a high purity and excellent magnetic properties from the industrial viewpoints and a process for producing the ferromagnetic particles, and also provides an anisotropic magnet, a bonded magnet and a compacted magnet which are obtained by using the ferromagnetic particles. The ferromagnetic particles comprising an Fe16N2 compound phase in an amount of not less than 80% as measured by Mössbauer spectrum and each having an outer shell in which FeO is present in the form of a layer having a thickness of not more than 5 nm according to the present invention can be produced by subjecting aggregated particles of an iron compound as a starting material whose primary particles have a ratio of [(average deviation of major axis lengths of particles)/(average major axis length of particles)] of not more than 50%, Uc of not more than 1.55, Cg of not less than 0.95, Cg2 of not less than 0.
    Type: Application
    Filed: April 26, 2012
    Publication date: March 27, 2014
    Applicants: TOHOKU UNIVERSITY, TODA KOGYO CORPORATION
    Inventors: Migaku Takahashi, Tomoyuki Ogawa, Yasunobu Ogata, Naoya Kobayashi, Chammika Ruwan Polwatta Gallage, Kaori Kohara
  • Patent number: 8647867
    Abstract: Provided is a cell cultivation method in which the cell is cultured using a peptide hydrogel as a scaffold, for carrying out high-dimensional culture of a cell such as porcine hepatocyte, human hepatocyte, porcine pancreatic islet or human pancreatic islet for a long period under conditions where cell survival, cell morphology and cell functions are maintained. Also provided are a cell culture including a cell and a peptide hydrogel obtained by the above-described cultivation method, a bioreactor including the cell culture, and a cell preparation including the cell culture.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: February 11, 2014
    Assignees: National University Corportion Okayama University, 3-D Matrix, Ltd.
    Inventors: Naoya Kobayashi, Noriaki Tanaka
  • Patent number: 8623552
    Abstract: The present invention relates to negative electrode materials for rechargeable lithium batteries and to rechargeable lithium batteries including the same. The negative electrode materials improve the capacity characteristics and cycle-life characteristics of the rechargeable lithium batteries. The negative electrode material includes a negative active material capable of intercalating and deintercalating lithium ions, and the negative active material includes an oxide particle represented by LixMyVzO2+d and having a full width at half maximum of a X-ray diffraction angle (2?) at a (003) plane of 0.2 degrees or more as measured by X-ray diffraction analysis using a CuK?ray.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: January 7, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Naoya Kobayashi, Sung-Soo Kim
  • Publication number: 20140001398
    Abstract: The present invention relates to ferromagnetic particles capable of exhibiting a high purity and excellent magnetic properties from the industrial viewpoints and a process for producing the ferromagnetic particles, and also provides an anisotropic magnet, a bonded magnet and a compacted magnet which are obtained by using the ferromagnetic particles.
    Type: Application
    Filed: January 19, 2012
    Publication date: January 2, 2014
    Applicant: TOHOKU UNIVERSITY
    Inventors: Migaku Takahashi, Tomoyuki Ogawa, Yasunobu Ogata, Naoya Kobayashi, Chammika Ruwan Polwatta Gallage, Kaori Kohara
  • Publication number: 20130287679
    Abstract: A process for producing the porous catalyst body for decomposing hydrocarbons, the body containing at least magnesium, aluminum and nickel, and has a pore volume of 0.01 to 0.5 cm3/g, an average pore diameter of not more than 300 ? and an average crushing strength of not less than 3 kgf. The process includes molding hydrotalcite containing at least magnesium, aluminum and nickel, and calcining the resulting molded product at a temperature of 700 to 1500° C.
    Type: Application
    Filed: June 25, 2013
    Publication date: October 31, 2013
    Applicant: TODA KOGYO CORPORATION
    Inventors: Shinji TAKAHASHI, Naoya KOBAYASHI
  • Publication number: 20130257573
    Abstract: The present invention relates to ferromagnetic particles comprising an Fe16N2 compound phase in an amount of not less than 70% as measured by Mössbauer spectrum, and at least one metal element X selected from the group consisting of Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt and Si in such an amount that a molar ratio of the metal element X to Fe is 0.04 to 25%, the ferromagnetic particles having a BHmax value of not less than 5 MGOe, and a process for producing the ferromagnetic particles, and further relates to an anisotropic magnet or a bonded magnet which is obtained by magnetically orienting the ferromagnetic particles. The ferromagnetic particles according to the present invention can be produced in an industrial scale and are in the form of Fe16N2 particles comprising different kinds of metal elements having a large BHmax value.
    Type: Application
    Filed: September 22, 2011
    Publication date: October 3, 2013
    Applicants: TOHOKU UNIVERSITY, TODA KOGYO CORPORATION
    Inventors: Migaku Takahashi, Tomoyuki Ogawa, Yasunobu Ogata, Akimasa Sakuma, Naoya Kobayashi, Chammika Ruwan Polwatta Gallage, Kaori Kohara
  • Patent number: 8486368
    Abstract: A process for producing the porous catalyst body for decomposing hydrocarbons, the body containing at least magnesium, aluminum and nickel, and has a pore volume of 0.01 to 0.5 cm3/g, an average pore diameter of not more than 300 ? and an average crushing strength of not less than 3 kgf. The process includes molding hydrotalcite containing at least magnesium, aluminum and nickel, and calcining the resulting molded product at a temperature of 700 to 1500° C.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: July 16, 2013
    Assignee: Toda Kogyo Corporation
    Inventors: Shinji Takahashi, Naoya Kobayashi
  • Patent number: 8440351
    Abstract: A rechargeable lithium ion battery including a positive electrode a positive active material and including a negative electrode having a negative active material. The positive active material includes a lithium-manganese-based compound core and a heat resistant polymer disposed on the lithium-manganese-based compound core. The heat resistant polymer has a glass transition temperature (Tg) ranging from about 80 to about 400° C. Alternatively, the positive active material may include a lithium-manganese-based compound core and an inorganic metal compound as well as the heat resistant polymer with a glass transition temperature (Tg) ranging from about 80 to about 400° C. disposed on the lithium-manganese-based compound core.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: May 14, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Won-Il Jung, Akira Takamuku, Hideaki Maeda, Naoya Kobayashi
  • Publication number: 20130029415
    Abstract: Provided is a cell cultivation method in which the cell is cultured using a peptide hydrogel as a scaffold, for carrying out high-dimensional culture of a cell such as porcine hepatocyte, human hepatocyte, porcine pancreatic islet or human pancreatic islet for a long period under conditions where cell survival, cell morphology and cell functions are maintained. Also provided are a cell culture including a cell and a peptide hydrogel obtained by the above-described cultivation method, a bioreactor including the cell culture, and a cell preparation including the cell culture.
    Type: Application
    Filed: December 23, 2011
    Publication date: January 31, 2013
    Inventors: Naoya KOBAYASHI, Noriaki TANAKA
  • Patent number: 8304367
    Abstract: The present invention aims at providing a catalyst as a porous catalyst body for decomposing hydrocarbons which comprises at least magnesium, aluminum and nickel, wherein the catalyst has an excellent catalytic activity for decomposition and removal of hydrocarbons, an excellent anti-sulfur poisoning property, an excellent anti-coking property even under a low-steam condition, a sufficient strength capable of withstanding crushing and breakage even when coking occurs within the catalyst, and an excellent durability.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: November 6, 2012
    Assignee: Toda Kogyo Corporation
    Inventors: Shinji Takahashi, Naoya Kobayashi
  • Publication number: 20120244356
    Abstract: The present invention relates to Fe16N2 particles in the form of a single phase which are obtained by subjecting iron oxide or iron oxyhydroxide whose surface may be coated with at least alumina or silica, if required, as a starting material, to reducing treatment and nitridation treatment, a process for producing the Fe16N2 particles in the form of a single phase for a heat treatment time of not more than 36 hr, and further relates to an anisotropic magnet or a bonded magnet which is obtained by magnetically orienting the Fe16N2 particles in the form of a single phase. The Fe16N2 particles according to the present invention can be produced in an industrial scale and have a large BHmax value.
    Type: Application
    Filed: October 19, 2010
    Publication date: September 27, 2012
    Inventors: Migaku Takahashi, Tomoyuki Ogawa, Yasunobu Ogata, Naoya Kobayashi
  • Patent number: 8268289
    Abstract: The present invention relates to a catalyst for decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms, comprising magnesium, aluminum, nickel and cobalt as constitutional elements, and further comprising ruthenium and/or palladium, wherein the metallic ruthenium and/or metallic palladium in the form of fine particles have an average particle diameter of 0.5 to 20 nm, and a content of the metallic ruthenium and/or metallic palladium is 0.05 to 5.0% by weight based on the weight of the catalyst. The catalyst of the present invention is capable of efficiently decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms (C2 or more hydrocarbons), is less expensive, and exhibits an excellent catalytic activity for decomposition and removal of hydrocarbons, in particular, an excellent capability of decomposing propane, and an excellent anti-coking property.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: September 18, 2012
    Assignee: Toda Kogyo Corporation
    Inventors: Shinji Takahashi, Naoya Kobayashi
  • Patent number: 8247475
    Abstract: According to the present invention, there are provided hydrotalcite-based compound particles surface-treated with an organic compound having not less than 3 carbon atoms, have a specific surface area of 5 to 150 m2/g, wherein a conceptual value x corresponding to micropores and ultramicropores, and a conceptual value y corresponding to volumes of macropores and micropores, both calculated from a water vapor adsorption curve thereof when exposed to a temperature of 25° C. and a humidity of 50% for 250 hours, are respectively within specific ranges. The hydrotalcite-based compound particles of the present invention are capable of capturing even a very small amount of halogens contained in various resins, and exhibiting an excellent effect of preventing deterioration of the resins.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 21, 2012
    Assignee: Toda Kogyo Corporation
    Inventors: Naoya Kobayashi, Torayuki Honmyo
  • Publication number: 20120201733
    Abstract: The present invention relates to a porous catalyst body for decomposing hydrocarbons, comprising a porous composite oxide comprising at least magnesium and/or calcium, and aluminum, and metallic nickel having a particle diameter of 1 to 25 nm, wherein the porous catalyst body has an average crushing strength of not less than 5 kgf and a displacement length of not less than 0.05 mm as measured by compressing the porous catalyst body under a load of 5 kgf. The porous catalyst body for decomposing hydrocarbons according to the present invention is less expensive, and has an excellent catalytic activity for decomposition and removal of hydrocarbons, an excellent anti-sulfur poisoning property, a high anti-coking property even under a low-steam condition, a crushing strength and a displacement length which are optimum for DSS operation, and an excellent durability.
    Type: Application
    Filed: September 8, 2010
    Publication date: August 9, 2012
    Inventors: Shinji Takahashi, Naoya Kobayashi, Yurie Hisayuku
  • Patent number: 8227114
    Abstract: The method of preparing a negative active material for a non-aqueous electrolyte rechargeable battery includes mixing a vanadium compound and a lithium compound and then subjecting the mixture to first firing to obtain Li1.0(VxMy)1.0O2 having a layered halite type structure (where 0.5?x?1.0, 0?y?0.5, x+y=1, and M is selected from the group consisting of group 2 to 15 elements of the periodic table and combinations thereof); and adding a lithium compound to the Li1.0(VxMy)1.0O2 and then subjecting the resultant to second firing. The negative active material for a non-aqueous electrolyte rechargeable battery prepared according to the preparing method has high crystallinity, and excellent charge and discharge characteristics at a high rate.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: July 24, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tetsuo Tokita, Hideaki Maeda, Naoya Kobayashi, Sung-Soo Kim
  • Publication number: 20120114965
    Abstract: Provided are a laminate for HDD suspension capable of avoiding data loss and crosstalk caused by higher frequency and coping with reduction in size and increase in capacity of HDD and a method for manufacturing the same. The laminate for HDD suspension comprises a 10-50 ?m-thick stainless steel layer, a 0.1-10 ?m-thick conductor layer (a) of a metal showing an electrical conductivity of 10-100% IACS, a 5-20 ?m-thick insulating layer of a polyimide resin showing a linear expansion coefficient of 1×10?5-3×10?5/° C., and a 5-50 ?m-thick conductor layer (b). The manufacturing method comprises applying a solution of a polyimide precursor in one layer or more to a conductor layer (a) of a laminate consisting of a stainless steel layer and a conductor layer (a), drying the polyimide precursor layer and then heating at 250° C. or above thereby forming a 5-20 ?m-thick insulating layer of polyimide resin with a linear expansion coefficient of 1×10?5-3×10?5/° C.
    Type: Application
    Filed: March 24, 2006
    Publication date: May 10, 2012
    Applicant: Nippon Steel Chemical Co., Ltd.
    Inventors: Kengo Takada, Naoya Kobayashi, Kazunori Oomizo, Mari Sakurai
  • Publication number: 20120070573
    Abstract: Preparing Mg—Zn—Al-based hydrotalcite-type particles which comprise core particles composed of Mg—Al-based hydrotalcite and an Mg—Zn—Al-based hydrotalcite layer formed on the surface of the core particle, and have an average plate surface diameter of 0.1 to 1.0 .mu.m and a refractive index adjustable to a required value in the range of 1.48 to 1.56.
    Type: Application
    Filed: November 28, 2011
    Publication date: March 22, 2012
    Applicant: TODA KOGYO CORPORATION
    Inventors: Naoya KOBAYASHI, Torayuki HONMYO
  • Publication number: 20110206986
    Abstract: A negative active material for a rechargeable lithium battery including a flake powder including a plurality of flakes, each flake including a plurality of silicon atoms and a plurality of oxygen atoms, wherein an oxygen atom amount for each flake ranges from 5 wt % to 38 wt % based on a total amount of silicon atoms and oxygen atoms, each flake having a thickness ranging from 30 nm to 500 nm and a ratio of an average longest dimension to the thickness ranging from 10 to 100.
    Type: Application
    Filed: January 12, 2011
    Publication date: August 25, 2011
    Applicant: SAMSUNG SDI CO., LTD.,
    Inventors: Toru Inagaki, Naoya Kobayashi, Ki-Jun Kim
  • Patent number: 7927745
    Abstract: A negative electrode for a rechargeable lithium battery includes a current collector and a negative active mass disposed on the current collector. The negative active mass includes a negative active material including a lithium vanadium composite oxide and a crystalline structure aid for inhibiting deterioration of a crystalline structure. The negative active material can inhibit an irreversible crystalline structure change during charge and discharge, and does not incur decomposition of an electrolyte resulting in improvement of a cycle-life of a rechargeable lithium battery.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 19, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tetsuo Tokita, Hideaki Maeda, Naoya Kobayashi, Sung-Soo Kim