Patents by Inventor Naoya KONDO

Naoya KONDO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160238525
    Abstract: A V-block refractometer capable of enhancing measurement accuracy is provided. An incident angle of measurement light incident on a V-block prism 1 from a collimator lens 48 is changed through the rotation of a motor 7, and the measurement light from the V-block prism 1 at each incident angle is detected by a detector 2. This configuration eliminates the need to provide the detector 2 near the motor 7 as in the conventional art, whereby deterioration in measurement accuracy caused by an increase in load to the motor 7 can be prevented, and the measurement accuracy can be enhanced.
    Type: Application
    Filed: July 4, 2013
    Publication date: August 18, 2016
    Applicant: SHIMADZU CORPORATION
    Inventors: Katsuto YAMADA, Naoya KONDO
  • Patent number: 9199458
    Abstract: An electromechanical transducer element includes a substrate; a common electrode disposed on the substrate; an electromechanical transducer film formed on the common electrode; an individual electrode formed on the electromechanical transducer film; a common electrode pad electrically connected to the common electrode; an individual electrode pad electrically connected to the individual electrode; and an insulation protective film formed on the common electrode and the individual electrode, contacting an upper end of the individual electrode pad, and surrounding a side surface of the individual electrode pad. The insulation protective film has a gradually decreasing thickness outward from an end of the individual electrode pad.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: December 1, 2015
    Assignee: Ricoh Company, Ltd.
    Inventor: Naoya Kondo
  • Patent number: 9186894
    Abstract: A droplet discharge head includes a substrate, an electromechanical transducer, a first terminal electrode, a second terminal electrode, and a holding substrate. The holding substrate covers the electromechanical transducer. The holding substrate has a first opening to expose at least a part of the first terminal electrode and a second opening to expose at least a part of the second terminal electrode. The first and second openings are arranged in an area in which an amount of charges supplied by a discharge electrode becomes a threshold amount or more when, by corona or glow discharge generated by the discharge electrode arranged to face a surface of the holding substrate having the first and second openings, charges are supplied to the first and second terminal electrodes through the first and second openings to generate an electric field between first and second drive electrodes to perform polarization processing on the electromechanical transducer.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: November 17, 2015
    Assignee: Ricoh Company, Ltd.
    Inventors: Satoshi Mizukami, Naoya Kondo
  • Patent number: 9168744
    Abstract: An electromechanical transducer element includes a substrate; a first electrode formed on the substrate as a common electrode; an electromechanical transducer membrane formed on the first electrode; a second electrode formed on the electromechanical transducer membrane as an individual electrode; a first insulation protection membrane formed on the first and the second electrode; a third electrode electrically connected to the first electrode; a fourth electrode electrically connected to the second electrode; a second insulation protection membrane including a common electrode pad formed on the third electrode and plural individual electrode pads formed on the fourth electrode; and a fifth electrode formed so as to surround a vicinity of at least one of the individual electrode pads disposed at end parts. Further, the fifth electrode is formed on the first insulation protection membrane and is electrically connected to the first electrode.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: October 27, 2015
    Assignee: RICOH COMPANY, LTD.
    Inventors: Satoshi Mizukami, Takeshi Sano, Naoya Kondo, Masaki Kato
  • Publication number: 20150283811
    Abstract: An electromechanical transducer element includes a substrate; a common electrode disposed on the substrate; an electromechanical transducer film formed on the common electrode; an individual electrode formed on the electromechanical transducer film; a common electrode pad electrically connected to the common electrode; an individual electrode pad electrically connected to the individual electrode; and an insulation protective film formed on the common electrode and the individual electrode, contacting an upper end of the individual electrode pad, and surrounding a side surface of the individual electrode pad. The insulation protective film has a gradually decreasing thickness outward from an end of the individual electrode pad.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 8, 2015
    Inventor: Naoya KONDO
  • Publication number: 20150266296
    Abstract: A droplet discharge head includes a substrate, an electromechanical transducer, a first terminal electrode, a second terminal electrode, and a holding substrate. The holding substrate covers the electromechanical transducer. The holding substrate has a first opening to expose at least a part of the first terminal electrode and a second opening to expose at least a part of the second terminal electrode. The first and second openings are arranged in an area in which an amount of charges supplied by a discharge electrode becomes a threshold amount or more when, by corona or glow discharge generated by the discharge electrode arranged to face a surface of the holding substrate having the first and second openings, charges are supplied to the first and second terminal electrodes through the first and second openings to generate an electric field between first and second drive electrodes to perform polarization processing on the electromechanical transducer.
    Type: Application
    Filed: March 17, 2015
    Publication date: September 24, 2015
    Inventors: Satoshi MIZUKAMI, Naoya KONDO
  • Publication number: 20150263263
    Abstract: A method of manufacturing an electromechanical transducer includes forming a first electrode on a substrate or a base film, forming a piezoelectric film made of lead zirconate titanate on the first electrode, forming a second electrode on the piezoelectric film, and polarizing the piezoelectric film. The polarizing includes applying to the second electrode a positive polarity voltage having a positive polarity relative to a potential of the first electrode, and satisfying a first expression of ?EcP?(?Ec)<0 and a second expression of |?EcP?(?Ec)|>0.15Ă—EcPav, where ?Ec represents an initial coercive field of a negative polarity side of the electromechanical transducer, ?EcP represents a coercive field of the negative polarity side after the applying, EcP represents a coercive field of a positive polarity side after the applying, and EcPav represents an average of absolute values of the coercive field ?EcP and the coercive field EcP.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 17, 2015
    Applicant: RICOH COMPANY, LTD.
    Inventors: Yoshikazu AKIYAMA, Naoya KONDO, Satoshi MIZUKAMI
  • Publication number: 20150077475
    Abstract: An electromechanical transducer element includes a substrate; a first electrode formed on the substrate as a common electrode; an electromechanical transducer membrane formed on the first electrode; a second electrode formed on the electromechanical transducer membrane as an individual electrode; a first insulation protection membrane formed on the first and the second electrode; a third electrode electrically connected to the first electrode; a fourth electrode electrically connected to the second electrode; a second insulation protection membrane including a common electrode pad formed on the third electrode and plural individual electrode pads formed on the fourth electrode; and a fifth electrode formed so as to surround a vicinity of at least one of the individual electrode pads disposed at end parts. Further, the fifth electrode is formed on the first insulation protection membrane and is electrically connected to the first electrode.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Inventors: Satoshi MIZUKAMI, Takeshi SANO, Naoya KONDO, Masaki KATO
  • Patent number: 8727505
    Abstract: Disclosed is an electromechanical transducer element that includes an electromechanical transducer film formed of a complex oxide (PZT) including lead (Pb), zirconium (Zr), and titanium (Ti). The electromechanical transducer film is formed by laminating plural PZT thin films until a thickness of the formed electromechanical transducer film becomes a predetermined thickness. When an atomic weight ratio (Pb/(Zr+Ti)) of average Pb included in the formed electromechanical transducer film is denoted by Pb(avg) and an atomic weight ratio (Pb/(Zr+Ti)) of Pb in any one of laminate interfaces of the plural PZT thin films is denoted by Pb(interface), the Pb(avg) is greater than or equal to 100 atomic percentage (at %) and less than or equal to 110 atomic percentage (at %), and a fluctuation ratio ?Pb=Pb(avg)?Pb(interface) of Pb in the laminate interface is less than or equal to 20 percent.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: May 20, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Satoshi Mizukami, Yoshikazu Akiyama, Masaru Shinkai, Keiji Ueda, Kanshi Abe, Takakazu Kihira, Naoya Kondo
  • Publication number: 20130002767
    Abstract: Disclosed is an electromechanical transducer element that includes an electromechanical transducer film formed of a complex oxide (PZT) including lead (Pb), zirconium (Zr), and titanium (Ti). The electromechanical transducer film is formed by laminating plural PZT thin films until a thickness of the formed electromechanical transducer film becomes a predetermined thickness. When an atomic weight ratio (Pb/(Zr+Ti)) of average Pb included in the formed electromechanical transducer film is denoted by Pb(avg) and an atomic weight ratio (Pb/(Zr+Ti)) of Pb in any one of laminate interfaces of the plural PZT thin films is denoted by Pb(interface), the Pb(avg) is greater than or equal to 100 atomic percentage (at %) and less than or equal to 110 atomic percentage (at %), and a fluctuation ratio ?Pb=Pb(avg)?Pb(interface) of Pb in the laminate interface is less than or equal to 20 percent.
    Type: Application
    Filed: June 21, 2012
    Publication date: January 3, 2013
    Applicant: RICOH COMPANY, LTD.,
    Inventors: Satoshi MIZUKAMI, Yoshikazu AKIYAMA, Masaru SHINKAI, Keiji UEDA, Kanshi ABE, Takakazu KIHIRA, Naoya KONDO