Patents by Inventor Naoyuki Kakinuma

Naoyuki Kakinuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10066081
    Abstract: There is provided a polymerizable composition for optical materials including (A) at least one kind of polythiols selected from 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, (B) polyisocyanate, and (C) at least one kind of ultraviolet absorbers having a maximum absorption peak in a range of 350 nm to 370 nm.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: September 4, 2018
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Naoyuki Kakinuma, Toshiya Hashimoto, Kouya Kojima
  • Patent number: 9944029
    Abstract: A process for producing an optical material of the present invention includes a step of mixing di- or higher-functional thiol compounds (A) having one or more sulfide bonds and/or one or more ester bonds with an imidazole-based curing catalyst (B) to prepare a mixed solution; a step of mixing the mixed solution with an isocyanate compound (C) including at least one kind of a di- or higher-functional alicyclic isocyanate compound (c1) and/or a di- or higher-functional aliphatic isocyanate compound (c2) to prepare a polymerizable composition for optical materials; a step of injecting the polymerizable composition for optical materials into a mold; and a step of polymerization-curing the polymerizable composition for optical materials in the mold.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: April 17, 2018
    Assignee: MITSUI CHEMICALS, INC.
    Inventor: Naoyuki Kakinuma
  • Publication number: 20180093945
    Abstract: A manufacturing method of an isocyanate compound including obtaining a reaction solution containing an aldehyde compound by reacting a compound represented by Formula (a1) or (a2) with hydrogen and carbon monoxide in the presence of a metal compound of groups 8 to 10 and a phosphorus compound, neutralizing the reaction solution, purifying an aldehyde compound by distilling the neutralized reaction solution, reacting the aldehyde compound with ammonia and with hydrogen in the presence of a catalyst to obtain an amine compound; and reacting the amine compound with a carbonylating agent to obtain an isocyanate compound, wherein the phosphorus compound is represented by the Formula (R1O)3P, and the base compound is at least one selected from carbonate and hydrogen carbonate of metals of group I and carbonate and hydrogen carbonate of metals of group II, wherein the neutralizing the reaction solution is performed within a temperature range of 40° C. to 50° C.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 5, 2018
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Naoyuki KAKINUMA, Masayuki FURUYA, Michiharu SAKATA, Koichi TOKUNAGA, Shigetoshi KUMA
  • Publication number: 20180093944
    Abstract: A manufacturing method of an amine compound including obtaining a reaction solution containing an aldehyde compound by reacting a compound represented by Formula (a1) or (a2) with hydrogen and carbon monoxide in the presence of a metal compound of groups 8 to 10 and a phosphorus compound, neutralizing the reaction, purifying an aldehyde compound by distilling the neutralized reaction solution, and reacting the aldehyde compound with ammonia and with hydrogen in the presence of a catalyst to obtain an amine compound, wherein the phosphorus compound is represented by the Formula (R1O)3P, and the base compound is at least one selected from carbonate and hydrogen carbonate of metals of group I and carbonate and hydrogen carbonate of metals of group II, and wherein the neutralizing the reaction solution is performed within a temperature range of 40° C. to 50° C.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 5, 2018
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Naoyuki KAKINUMA, Masayuki FURUYA, Michiharu SAKATA, Koichi TOKUNAGA, Shigetoshi KUMA
  • Patent number: 9933635
    Abstract: The optical material of the present invention contains one or more kinds of ultraviolet absorber (a) having a maximum absorption peak within a range of equal to or greater than 350 nm and equal to or less than 370 nm, in which a light transmittance of the optical material having a thickness of 2 mm satisfies the following characteristics (1) to (3), (1) a light transmittance at a wavelength of 410 nm is equal to or less than 10%, (2) a light transmittance at a wavelength of 420 nm is equal to or less than 70%, and (3) a light transmittance at a wavelength of 440 nm is equal to or greater than 80%.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: April 3, 2018
    Assignee: MITSUI CHEMICALS INC.
    Inventors: Toshiya Hashimoto, Naoyuki Kakinuma, Kouya Kojima
  • Publication number: 20180016415
    Abstract: A polymerizable composition for an optical material including (A) an isocyanate compound; (B) an active hydrogen compound; and (C) one or more types of ultraviolet absorber represented by General Formula (1) and having a maximum absorption peak in a range of equal to or more than 350 nm and equal to or less than 370 nm. (In General Formula (1) above, R1 and R2 represent, an alkyl group having 1 to 8 carbon atoms and may be same or different from each other, a plurality of R1 present or a plurality of R2 present may be same or different, m represents an integer of 0 to 3, n represents an integer of 0 to 3, and R3 represents a functional group having 2 to 15 carbon atoms which includes an ester bond.
    Type: Application
    Filed: February 1, 2016
    Publication date: January 18, 2018
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Naoyuki KAKINUMA, Kouju OKAZAKI
  • Patent number: 9857503
    Abstract: An optical material of the present invention has the following characteristics (1) to (4) in a transmittance curve which is measured at a thickness of 2 mm of the optical material. (1) the transmittance curve has a maximum transmittance value at 400 nm to 440 nm and the maximum transmittance thereof is 50% or more. (2) the transmittance curve has a minimum transmittance value at 471 nm to 500 nm. (3) The transmittance at 540 nm is 60% or more. (4) The minimum transmittance value at 471 nm to 500 nm is seven-tenths or less of the maximum transmittance at 400 nm to 440 nm and is seven-tenths or less of the transmittance at 540 nm.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: January 2, 2018
    Assignees: MITSUI CHEMICALS, INC., YAMAMOTO CHEMICALS, INC.
    Inventors: Kouya Kojima, Toshiya Hashimoto, Naoyuki Kakinuma, Satoshi Kinoshita, Hiroyuki Sasaki
  • Publication number: 20170355106
    Abstract: An internal release agent includes at least one phosphodiester represented by the following general formula (1). In the formula, R1 and R2 independently represent a hydrocarbon group having 1 to 30 carbon atoms, which is optionally substituted with at least one hydroxyl group, and R3 represents an alkylene group having 2 to 4 carbon atoms. A plurality of R3's may be the same as or different from each other. M represents a hydrogen atom, an ammonium ion, an alkali metal ion, or a monovalent/divalent alkali earth metal ion, and n is an integer of 1 to 60.
    Type: Application
    Filed: December 25, 2015
    Publication date: December 14, 2017
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Kouju OKAZAKI, Naoyuki KAKINUMA, Motoharu OIKI
  • Patent number: 9809533
    Abstract: The purification method of an aldehyde compound of the present invention includes a step of neutralizing a reaction solution containing an aldehyde compound by adding water and a base compound to the reaction solution, and a step of distilling the neutralized reaction solution, in which the reaction solution is obtained by reacting a compound represented by the following Formula (a1) or (a2) with hydrogen and carbon monoxide in the presence of a metal compound of groups 8 to 10 and a phosphorus compound, the phosphorus compound is represented by Formula (R1O)3P, and the base compound is at least one kind selected from among carbonate and hydrogen carbonate of metals of group I on the periodic table and carbonate and hydrogen carbonate of metals of group II on the periodic table.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 7, 2017
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Naoyuki Kakinuma, Masayuki Furuya, Michiharu Sakata, Koichi Tokunaga, Shigetoshi Kuma
  • Patent number: 9720137
    Abstract: The eyewear material is an eyewear material containing thermoplastic polyurethane. The eyewear material has a tan ? peak at both less than 0° C. and 0° C. or more and 70° C. or less observed in dynamic viscoelasticity measurement in tensile mode under the measurement conditions of a temperature increase speed of 5° C./min and a measurement frequency of 10 Hz.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: August 1, 2017
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Satoshi Yamasaki, Goro Kuwamura, Daisuke Nishiguchi, Daisuke Hasegawa, Toshihiko Nakagawa, Hirokazu Morita, Hidetaka Tsukada, Kenichi Goto, Shinsuke Ito, Naoyuki Kakinuma, Tetsuya Hamada, Shinji Kiyono, Takeshi Fukuda, Kazuhiro Kosumi
  • Patent number: 9708260
    Abstract: A method for producing meta-xylylenediamines includes a reaction step in which monohalogenated benzenes, formaldehydes, and an amide compound having a primary amide group or a secondary amide group are allowed to react in the presence of an acidic liquid, a dehalogenation step in which the halogen atom derived from the monohalogenated benzenes is replaced with a hydrogen atom, and a deprotection step in which the primary amide group or the secondary amide group derived from the amide compound is converted to an amino group. In the reaction step, the acidic liquid contains inorganic acid, the equivalent ratio of the hydrogen atom of the inorganic acid relative to the monohalogenated benzenes is more than 16; the acidic liquid has an inorganic acid concentration of more than 80 mass %; and the reaction temperature is more than 40° C.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: July 18, 2017
    Assignee: MITSUI CHEMICALS INC.
    Inventors: Kouya Kojima, Hidetaka Tsukada, Mamoru Takashina, Chitoshi Shimakawa, Naoyuki Kakinuma
  • Patent number: 9670148
    Abstract: A method for producing meta-xylylenediisocyanates includes a reaction step in which monohalogenated benzenes, formaldehydes, and an amide compound represented by general formula (1) below are allowed to react in the presence of an acidic liquid to produce a bisamide compound; a dehalogenation step in which in the bisamide compound, the halogen atom derived from the monohalogenated benzenes is replaced with a hydrogen atom; and a thermal decomposition step in which the bisamide compound from which the halogen atom is eliminated is subjected to thermal decomposition. In the reaction step, the acidic liquid contains inorganic acid, the equivalent ratio of the hydrogen atom of the inorganic acid relative to the monohalogenated benzenes is more than 14, the acidic liquid has an inorganic acid concentration of more than 90 mass %, and the reaction temperature is more than 10° C. General formula (1): wherein R1 represents an alkoxy group or an amino group.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: June 6, 2017
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Kouya Kojima, Hidetaka Tsukada, Mamoru Takashina, Chitoshi Shimakawa, Naoyuki Kakinuma
  • Publication number: 20170057184
    Abstract: A process for producing an optical material of the present invention includes a step of mixing di- or higher-functional thiol compounds (A) having one or more sulfide bonds and/or one or more ester bonds with an imidazole-based curing catalyst (B) to prepare a mixed solution; a step of mixing the mixed solution with an isocyanate compound (C) including at least one kind of a di- or higher-functional alicyclic isocyanate compound (c1) and/or a di- or higher-functional aliphatic isocyanate compound (c2) to prepare a polymerizable composition for optical materials; a step of injecting the polymerizable composition for optical materials into a mold; and a step of polymerization-curing the polymerizable composition for optical materials in the mold.
    Type: Application
    Filed: February 18, 2015
    Publication date: March 2, 2017
    Applicant: Mitsui Chemicals, Inc.
    Inventor: Naoyuki KAKINUMA
  • Publication number: 20170009002
    Abstract: Disclosed is a polymerizable composition for an optical material containing polyisocyanate (a) including aliphatic polyisocyanate (a1) and a modified aliphatic polyisocyanate (a2); and polythiol (b) having a di- or higher functional thiol group, in which the modified aliphatic polyisocyanate (a2) is contained in the polyisocyanate (a) in the amount of less than or equal to 60 weight %.
    Type: Application
    Filed: February 5, 2015
    Publication date: January 12, 2017
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Hidetaka TSUKADA, Shinsuke ITO, Naoyuki KAKINUMA, Kenichi GOTO, Toshihiko NAKAGAWA, Satoshi YAMASAKI
  • Patent number: 9487475
    Abstract: A preparation method of an aldehyde compound of the present invention includes a step of reacting a compound represented by the following general formula (a1) with hydrogen and carbon monoxide in the presence of a metal compound including 0.01 ppmmol to 10 ppmmol of a metal belonging to Groups 8 to 10 with respect to 1 mole of the compound and a phosphorus compound, and in the step, the amount of acrylonitrile included in the compound represented by the general formula (a1) is equal to or less than 200-fold by mole with respect to 1 mole of the metal belonging to Groups 8 to 10.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 8, 2016
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Koichi Tokunaga, Naoyuki Kakinuma, Shigetoshi Kuma
  • Publication number: 20160313575
    Abstract: There is provided a polymerizable composition for optical materials including polyisocyanate (A), polythiol (B), an acidic phosphoric ester (C) represented by the following General Formula (1), and one or more kinds of ultraviolet absorbers (D) having a maximum absorption peak in a range of 350 nm to 370 nm, in which in a case where the total molar number of isocyanate groups in the polyisocyanate (A) is 100 mol %, a secondary isocyanate group is included in 20 mol % or more and the acidic phosphoric ester (C) is included in an amount of 100 ppm to 700 ppm with respect to the total weight of the polyisocyanate (A) and the polythiol (B).
    Type: Application
    Filed: December 12, 2014
    Publication date: October 27, 2016
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Naoyuki KAKINUMA, Toshiya HASHIMOTO, Kouya KOJIMA
  • Patent number: 9477012
    Abstract: 1,4-bis(isocyanatomethyl)cyclohexane contains 70 mol % or more and 95 mol % or less of a trans isomer relative to a total amount of a cis isomer and the trans isomer, and 0.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: October 25, 2016
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Satoshi Yamasaki, Hirokazu Morita, Goro Kuwamura, Daisuke Nishiguchi, Toshihiko Nakagawa, Daisuke Hasegawa, Tetsuya Hamada, Shinji Kiyono, Takeshi Fukuda, Kazuhiro Kosumi, Hidetaka Tsukada, Kenichi Goto, Shinsuke Ito, Naoyuki Kakinuma
  • Patent number: 9475903
    Abstract: 1,4-bis(isocyanatomethyl)cyclohexane contains 70 mol % or more and 95 mol % or less of a trans isomer relative to a total amount of a cis isomer and the trans isomer, and 0.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: October 25, 2016
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Satoshi Yamasaki, Hirokazu Morita, Goro Kuwamura, Daisuke Nishiguchi, Toshihiko Nakagawa, Daisuke Hasegawa, Tetsuya Hamada, Shinji Kiyono, Takeshi Fukuda, Kazuhiro Kosumi, Hidetaka Tsukada, Kenichi Goto, Shinsuke Ito, Naoyuki Kakinuma
  • Patent number: 9475760
    Abstract: A preparation method of an aldehyde compound of the present invention includes a step of reacting the compound represented by the following general formula (a1) or (a2) with hydrogen and carbon monoxide in the presence of a metal compound including 0.01 ppmmol to 10 ppmmol of a metal belonging to Groups 8 to 10 with respect to 1 mole of the compound and a phosphorus compound, and the amount of a chlorine portion in the reaction system in the step is equal to or less than 1.5 parts by weight with respect to 1 part by weight of the metal belonging to Groups 8 to 10.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: October 25, 2016
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Koichi Tokunaga, Naoyuki Kakinuma, Shigetoshi Kuma
  • Publication number: 20160304701
    Abstract: There is provided a polymerizable composition for optical materials including (A) at least one kind of polythiols selected from 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, (B) polyisocyanate, and (C) at least one kind of ultraviolet absorbers having a maximum absorption peak in a range of 350 nm to 370 nm.
    Type: Application
    Filed: December 12, 2014
    Publication date: October 20, 2016
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Naoyuki KAKINUMA, Toshiya HASHIMOTO, Kouya KOJIMA