Patents by Inventor Naoyuki Orihashi

Naoyuki Orihashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220320742
    Abstract: An antenna element according to the present invention includes a substrate, an emitting element disposed on the substrate, and metal patterns formed in the same surface of the same substrate as those of the emitting element, and disposed so as to be in an electrically floating state, in which the metal patterns are disposed at such positions that the metal patterns have a specific distance from the emitting element.
    Type: Application
    Filed: May 14, 2020
    Publication date: October 6, 2022
    Applicant: NEC Corporation
    Inventor: Naoyuki ORIHASHI
  • Patent number: 11343912
    Abstract: An electronic circuit apparatus according an aspect of the present disclosure includes a substrate, an electronic circuit disposed on the substrate, and metal patterns and formed on the same surface as a surface on which the electronic circuit is disposed, the metal patterns and being provided so as to be in an electrically floating state, in which the metal patterns and are disposed at places where they have a specified distance from the electronic circuit.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: May 24, 2022
    Assignee: NEC CORPORATION
    Inventor: Naoyuki Orihashi
  • Publication number: 20210161005
    Abstract: An electronic circuit apparatus according an aspect of the present disclosure includes a substrate, an electronic circuit disposed on the substrate, and metal patterns and formed on the same surface as a surface on which the electronic circuit is disposed, the metal patterns and being provided so as to be in an electrically floating state, in which the metal patterns and are disposed at places where they have a specified distance from the electronic circuit.
    Type: Application
    Filed: November 24, 2020
    Publication date: May 27, 2021
    Applicant: NEC CORPORATION
    Inventor: Naoyuki ORIHASHI
  • Patent number: 10050327
    Abstract: Impedance optimization is difficult in microwave-band waveguide converters. To solve that problem, this waveguide converter is provided with the following: a waveguide provided so as to introduce microwaves to an antenna that performs input and output in a planar microwave circuit; a terminal waveguide that faces the aforementioned waveguide with the antenna interposed therebetween and connects to said waveguide so as to terminate same; and a conductor plate mounted so as to face the antenna. The conductor plate is electrically connected to at least part of the inside wall of the terminal waveguide.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: August 14, 2018
    Assignee: NEC Corporation
    Inventor: Naoyuki Orihashi
  • Patent number: 9653769
    Abstract: Antenna 2 and radio communication apparatus 1 include mount portions 9 and 15, flat proximity opposing surfaces 13 and 20, and waveguide portions 12 and 19 penetrating through proximity opposing surfaces 13 and 20, respectively. For example, in proximity opposing surface 13 of radio communication apparatus 1, choke groove 14 is formed outside waveguide portion 12. With mount portions 9 and 15 of antenna 2 and radio communication apparatus 1 abutted against and fixed to each other, proximity opposing surfaces 13 and 20 are set parallel to, and directly opposite to each other with a clearance interposed therebetween so that waveguide portions 12 and 19, opposite to each other and with a clearance, form a waveguide.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: May 16, 2017
    Assignee: NEC Corporation
    Inventors: Masatoshi Shimizu, Naoyuki Orihashi
  • Publication number: 20170104258
    Abstract: Impedance optimization is difficult in microwave-band waveguide converters. To solve that problem, this waveguide converter is provided with the following: a waveguide provided so as to introduce microwaves to an antenna that performs input and output in a planar microwave circuit; a terminal waveguide that faces the aforementioned waveguide with the antenna interposed therebetween and connects to said waveguide so as to terminate same; and a conductor plate mounted so as to face the antenna. The conductor plate is electrically connected to at least part of the inside wall of the terminal waveguide.
    Type: Application
    Filed: February 27, 2015
    Publication date: April 13, 2017
    Applicant: NEC CORPORATION
    Inventor: Naoyuki ORIHASHI
  • Patent number: 9270355
    Abstract: A communication device 1 (transceivers 400) transmits a training signal from its own transmitting antenna while performing beam scanning, and a communication device 2 (transceivers 500) receives this training signal in a state where a quasi-omni pattern is generated in its own receiving antenna. Further, the device 1 transmits a training signal in a state where a quasi-omni pattern is generated in the transmitting antenna, and the device 2 receives this training signal by the receiving antenna while performing beam scanning. The device 1 and 2 detects, from respective reception results, transmitting-antenna-setting candidates of the device 1 and receiving-antenna-setting candidates of the device 2, and determines antenna-setting pairs (combinations of antenna-setting candidates). The above-described processes are also performed for a receiving antenna of the device 1 and a transmitting antenna of the device 2. The device 1 and 2 communicates by using the obtained antenna-setting pairs.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: February 23, 2016
    Assignee: NEC CORPORATION
    Inventors: Kenichi Hosoya, Kenichi Maruhashi, Naoyuki Orihashi
  • Publication number: 20160036510
    Abstract: When communication is to be performed between communication devices having a directivity control function, a plurality of antenna-setting pairs available for the communication are stored by an initial training, and the communication is started by using one of the plurality of antenna-setting pairs. When the communication quality is deteriorated, firstly, a training signal is transmitted while successively setting each one of the plurality of antenna-setting candidates determined in the initial training in a transmitting antenna of one of the communication devices (400), and the training signal is received in a state where a quasi-omni pattern is generated in a receiving antenna of the other communication device (500). In this way, in radio communication performing beam forming, it is possible to ensure the time synchronization between the communication devices when communication is disconnected or communication quality is deteriorated due to shielding or the like.
    Type: Application
    Filed: October 7, 2015
    Publication date: February 4, 2016
    Applicant: NEC CORPORATION
    Inventors: Kenichi HOSOYA, Kenichi MARUHASHI, Naoyuki ORIHASHI
  • Publication number: 20160028141
    Abstract: Antenna 2 and radio communication apparatus 1 include mount portions 9 and 15, flat proximity opposing surfaces 13 and 20, and waveguide portions 12 and 19 penetrating through proximity opposing surfaces 13 and 20, respectively. For example, in proximity opposing surface 13 of radio communication apparatus 1, choke groove 14 is formed outside waveguide portion 12. With mount portions 9 and 15 of antenna 2 and radio communication apparatus 1 abutted against and fixed to each other, proximity opposing surfaces 13 and 20 are set parallel to, and directly opposite to each other with a clearance interposed therebetween so that waveguide portions 12 and 19, opposite to each other and with a clearance, form a waveguide.
    Type: Application
    Filed: January 18, 2013
    Publication date: January 28, 2016
    Inventors: Masatoshi SHIMIZU, Naoyuki ORIHASHI
  • Patent number: 9203161
    Abstract: An antenna apparatus 1 includes a high-frequency output portion 2 for outputting a high-frequency signal, an antenna 5 including a first excitation unit 3 and a second excitation unit 4, the first excitation unit 3 emitting a first linearly polarized wave according to the high-frequency signal output from the high-frequency output portion 2, the second excitation unit 4 emitting a second linearly polarized wave that is orthogonal to the first linearly polarized wave at the same time with the first linearly polarized wave according to the high-frequency signal output from the high-frequency output portion, and a phase adjustment portion 6 for adjusting a phase of at least one of the high-frequency signal to be input to the first excitation unit 3 and the high-frequency signal to be input to the second excitation unit 4 in a range of change from 0 to 270 or more degrees.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: December 1, 2015
    Assignee: NEC CORPORATION
    Inventors: Naoyuki Orihashi, Kenichi Maruhashi
  • Patent number: 9184821
    Abstract: When communication is to be performed between communication devices having a directivity control function, a plurality of antenna-setting pairs available for the communication are stored by an initial training, and the communication is started by using one of the plurality of antenna-setting pairs. When the communication quality is deteriorated, firstly, a training signal is transmitted while successively setting each one of the plurality of antenna-setting candidates determined in the initial training in a transmitting antenna of one of the communication devices (400), and the training signal is received in a state where a quasi-omni pattern is generated in a receiving antenna of the other communication device (500). In this way, in radio communication performing beam forming, it is possible to ensure the time synchronization between the communication devices when communication is disconnected or communication quality is deteriorated due to shielding or the like.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 10, 2015
    Assignee: NEC CORPORATION
    Inventors: Kenichi Hosoya, Kenichi Maruhashi, Naoyuki Orihashi
  • Publication number: 20150171946
    Abstract: A communication device 1 (transceivers 400) transmits a training signal from its own transmitting antenna while performing beam scanning, and a communication device 2 (transceivers 500) receives this training signal in a state where a quasi-omni pattern is generated in its own receiving antenna. Further, the device 1 transmits a training signal in a state where a quasi-omni pattern is generated in the transmitting antenna, and the device 2 receives this training signal by the receiving antenna while performing beam scanning. The device 1 and 2 detects, from respective reception results, transmitting-antenna-setting candidates of the device 1 and receiving-antenna-setting candidates of the device 2, and determines antenna-setting pairs (combinations of antenna-setting candidates). The above-described processes are also performed for a receiving antenna of the device 1 and a transmitting antenna of the device 2. The device 1 and 2 communicates by using the obtained antenna-setting pairs.
    Type: Application
    Filed: January 22, 2015
    Publication date: June 18, 2015
    Applicant: NEC CORPORATION
    Inventors: Kenichi HOSOYA, Kenichi MARUHASHI, Naoyuki ORIHASHI
  • Patent number: 8971964
    Abstract: A communication device 1 (transceivers 400) transmits a training signal from its own transmitting antenna while performing beam scanning, and a communication device 2 (transceivers 500) receives this training signal in a state where a quasi-omni pattern is generated in its own receiving antenna. Further, the device 1 transmits a training signal in a state where a quasi-omni pattern is generated in the transmitting antenna, and the device 2 receives this training signal by the receiving antenna while performing beam scanning. The device 1 and 2 detects, from respective reception results, transmitting-antenna-setting candidates of the device 1 and receiving-antenna-setting candidates of the device 2, and determines antenna-setting pairs (combinations of antenna-setting candidates). The above-described processes are also performed for a receiving antenna of the device 1 and a transmitting antenna of the device 2. The device 1 and 2 communicates by using the obtained antenna-setting pairs.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: March 3, 2015
    Assignee: NEC Corporation
    Inventors: Kenichi Hosoya, Kenichi Maruhashi, Naoyuki Orihashi
  • Patent number: 8933840
    Abstract: To suppress adverse effects caused by side lobes of an antenna array when an AWV to be used for communication is determined based on a transmission/reception result of a training signal. A first transceiver generates a fixed beam pattern and transmits a training signal. In that state, a second transceiver receives the training signal while scanning for the main beam direction, and thereby determines a plurality of direction of arrivals (DOAs). Next, the second transceiver receives the training signal in a state where the signal receptions from the plurality of DODs are restricted one by one (e.g., a null direction or a direction close to the null direction is fixed in the DOA), and calculates the change of the signal characteristics from that obtained in the first reception.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: January 13, 2015
    Assignee: NEC Corporation
    Inventors: Kenichi Hosoya, Kenichi Maruhashi, Naoyuki Orihashi
  • Patent number: 8890764
    Abstract: An array antenna apparatus includes a radio circuit; an array antenna that includes a plurality of antenna elements; feeder lines that connect the radio circuit to the respective antenna elements; and a delay circuit provided at each of one or more of the feeder lines. An amount of delay of the delay circuit is set so that the sum of a phase delay by the delay circuit and a phase delay due to a difference between a length of the corresponding feeder line and a predetermined reference length is an integer multiple of 360 degrees.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: November 18, 2014
    Assignee: NEC Corporation
    Inventor: Naoyuki Orihashi
  • Publication number: 20140320228
    Abstract: A circulator includes a ferrite disposed above a PCB, a metal cover that covers above the ferrite and is formed integrally, a plurality of connection parts that electrically connect the metal cover to a plurality of respective signal transmission lines above the PCB, and a permanent magnet that applies a magnetic field to the ferrite. Thus, it is possible to provide, for example, a non-reciprocal circuit element that is composed of a small number of parts and can be easily mounted on a circuit board, a communication apparatus equipped with a circuit including the non-reciprocal circuit element, and a manufacturing method of a non-reciprocal circuit element.
    Type: Application
    Filed: October 12, 2012
    Publication date: October 30, 2014
    Applicant: NEC CORPORATION
    Inventor: Naoyuki Orihashi
  • Publication number: 20140292577
    Abstract: A communication device 1 (transceivers 400) transmits a training signal from its own transmitting antenna while performing beam scanning, and a communication device 2 (transceivers 500) receives this training signal in a state where a quasi-omni pattern is generated in its own receiving antenna. Further, the device 1 transmits a training signal in a state where a quasi-omni pattern is generated in the transmitting antenna, and the device 2 receives this training signal by the receiving antenna while performing beam scanning. The device 1 and 2 detects, from respective reception results, transmitting-antenna-setting candidates of the device 1 and receiving-antenna-setting candidates of the device 2, and determines antenna-setting pairs (combinations of antenna-setting candidates). The above-described processes are also performed for a receiving antenna of the device 1 and a transmitting antenna of the device 2. The device 1 and 2 communicates by using the obtained antenna-setting pairs.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Applicant: NEC CORPORATION
    Inventors: Kenichi HOSOYA, Kenichi MARUHASHI, Naoyuki ORIHASHI
  • Patent number: 8811907
    Abstract: A communication device 1 (transceivers 400) transmits a training signal from its own transmitting antenna while performing beam scanning, and a communication device 2 (transceivers 500) receives this training signal in a state where a quasi-omni pattern is generated in its own receiving antenna. Further, the device 1 transmits a training signal in a state where a quasi-omni pattern is generated in the transmitting antenna, and the device 2 receives this training signal by the receiving antenna while performing beam scanning. The device 1 and 2 detects, from respective reception results, transmitting-antenna-setting candidates of the device 1 and receiving-antenna-setting candidates of the device 2,and determines antenna-setting pairs (combinations of antenna-setting candidates). The above-described processes are also performed for a receiving antenna of the device 1 and a transmitting antenna of the device 2. The device 1 and 2 communicates by using the obtained antenna-setting pairs.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: August 19, 2014
    Assignee: NEC Corporation
    Inventors: Kenichi Hosoya, Kenichi Maruhashi, Naoyuki Orihashi
  • Patent number: 8526878
    Abstract: A channel response matrix is obtained by performing a training process between a transmitter 401 and a receiver 402 to obtain optimal signal phases of the antenna array. Next, a singular-value decomposition (SVD) process is performed to decompose the channel response matrix into a correlation matrix and eigenvalues. Next, a diagonal matrix having square roots of the eigenvalues as its components is obtained. Next, all but one of diagonal components included in the diagonal matrix are replaced with zeros, and optimal setting of the amplitudes and phases of signals to be applied to the antenna array (antenna weight vector) for use in wireless communication between the transmitter and the receiver is obtained based on a channel response matrix that is reconstructed by using the component-replaced diagonal matrix. In this way, when wireless communication is implemented by performing beam forming, the time necessary to find and set a beam direction can be reduced.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: September 3, 2013
    Assignee: NEC Corporation
    Inventors: Kenichi Maruhashi, Naoyuki Orihashi, Kenichi Hosoya
  • Patent number: 8508409
    Abstract: To suppress an adverse effect caused by side lobes of an antenna array when determining an AWV to be used in communication. A first communication device transmits/receives a training signal while scanning a beam pattern, and a second communication device receives/transmits the training signal with a fixed beam pattern. A primary DOD/DOA in the first communication device is determined based on the transmission/reception result of the training signal. Then, second round training is performed. In this point, the first communication device transmits/receives the training signal while scanning a beam pattern in a state where transmission to the primary DOD or reception from the primary DOA is restricted. A secondary DOD/DOA is determined based on the result of the second round training. An AWV corresponding to the primary DOD/DOA and an AWV corresponding to the secondary DOD/DOA are selectively used in communication between the first and second devices.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: August 13, 2013
    Assignee: NEC Corporation
    Inventors: Kenichi Hosoya, Kenichi Maruhashi, Naoyuki Orihashi