Patents by Inventor Naoyuki YAGI

Naoyuki YAGI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926561
    Abstract: To provide a crystallized glass substrate including a surface with a compressive stress layer, in which a compressive stress CS (MPa) on an outermost surface of the compressive stress layer is 400 to 1400 MPa, and DOL50%/DOLzero is 0.30 or more, where DOL50% (?m) is a depth at which the value of the compressive stress is 50% of the CS and DOLzero (?m) is a depth at which the value of the compressive stress is 0 MPa.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: March 12, 2024
    Assignee: OHARA INC.
    Inventors: Toshitaka Yagi, Kohei Ogasawara, Yuki Motoshima, Reika Kojima, Yutaka Yamashita, Naoyuki Goto
  • Patent number: 11926559
    Abstract: To provide a crystallized glass substrate including a surface with a compressive stress layer, in which a stress depth DOLzero of the compressive stress layer, at which the compressive stress is 0 MPa, is 45 to 200 ?m, a compressive stress CS on an outermost surface of the compressive stress layer is 400 to 1400 MPa, and CS×DOLzero, which is a product of the compressive stress CS on the outermost surface and the stress depth DOLzero (?m), is 4.8×104 or more.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: March 12, 2024
    Assignee: OHARA INC.
    Inventors: Toshitaka Yagi, Kohei Ogasawara, Yuki Motoshima, Reika Kojima, Yutaka Yamashita, Naoyuki Goto
  • Patent number: 11926554
    Abstract: To provide a crystallized glass substrate including a surface with a compressive stress layer, where a stress depth DOLzero of the compressive stress layer, at which the compressive stress is 0 MPa, is 45 to 200 ?m, a compressive stress CS on an outermost surface of the compressive stress layer is 400 to 1400 MPa, and a central stress CT determined by using curve analysis is 55 to 300 MPa.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: March 12, 2024
    Assignee: OHARA INC.
    Inventors: Toshitaka Yagi, Kohei Ogasawara, Yuki Motoshima, Reika Kojima, Yutaka Yamashita, Naoyuki Goto
  • Patent number: 11926562
    Abstract: To provide a crystallized glass substrate including a surface with a compressive stress layer, in which, CS is 400 to 1400 MPa and CT×(T?2×DOLzero)/CS×DOLzero is 0.60 or more, where CS (MPa) denotes a compressive stress on an outermost surface of the compressive stress layer, DOLzero (?m) denotes a stress depth of the compressive stress layer at which the compressive stress is 0 MPa, CT (MPa) denotes a central stress determined by curve analysis, and T (?m) denotes a thickness of the substrate.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: March 12, 2024
    Assignee: OHARA INC.
    Inventors: Toshitaka Yagi, Kohei Ogasawara, Yuki Motoshima, Reika Kojima, Yutaka Yamashita, Naoyuki Goto
  • Patent number: 10625603
    Abstract: A fuel cap capable of preventing a reduction in breathability in a housing due to a moistened adsorbent and appropriately discharging fuel vapor includes a housing including an inner space through which vapor generated in a fuel tank flows upward from below. A granular adsorbent is disposed in the inner space of the housing. A lower air-permeable layer is disposed below the adsorbent, and an upper air-permeable layer is disposed above the adsorbent. A lower porous member is disposed between the adsorbent and the lower air-permeable layer. The lower air-permeable layer, the lower porous member, and the upper air-permeable layer respectively have a porous structure. A density of the lower porous member is lower than a density of the lower air-permeable layer and a density of the upper air-permeable layer.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: April 21, 2020
    Assignee: YAMAHA MOTOR POWER PRODUCTS KABUSHIKI KAISYA
    Inventors: Yuki Nagasawa, Naoyuki Yagi
  • Publication number: 20180186231
    Abstract: A fuel cap capable of preventing a reduction in breathability in a housing due to a moistened adsorbent and appropriately discharging fuel vapor includes a housing including an inner space through which vapor generated in a fuel tank flows upward from below. A granular adsorbent is disposed in the inner space of the housing. A lower air-permeable layer is disposed below the adsorbent, and an upper air-permeable layer is disposed above the adsorbent. A lower porous member is disposed between the adsorbent and the lower air-permeable layer. The lower air-permeable layer, the lower porous member, and the upper air-permeable layer respectively have a porous structure. A density of the lower porous member is lower than a density of the lower air-permeable layer and a density of the upper air-permeable layer.
    Type: Application
    Filed: February 26, 2016
    Publication date: July 5, 2018
    Inventors: Yuki NAGASAWA, Naoyuki YAGI