Patents by Inventor Narasimha-Rao V. Bangaru

Narasimha-Rao V. Bangaru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9896748
    Abstract: A steel composition and method from making a dual phase steel therefrom. The dual phase steel may have carbon of about 0.05% by weight to about 0.12 wt %; niobium of about 0.005 wt % to about 0.03 wt %; titanium of about 0.005 wt % to about 0.02 wt %; nitrogen of about 0.001 wt % to about 0.01 wt %; silicon of about 0.01 wt % to about 0.5 wt %; manganese of about 0.5 wt % to about 2.0 wt %; and a total of molybdenum, chromium, vanadium and copper less than about 0.15 wt %. The steel may have a first phase consisting of ferrite and a second phase having one or more of carbide, pearlite, martensite, lower bainite, granular bainite, upper bainite, and degenerate upper bainite. A solute carbon content in the first phase may be about 0.01 wt % or less.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: February 20, 2018
    Assignee: Exxon Mobil Upstream Research Company
    Inventors: Jayoung Koo, Narasimha-Rao V. Bangaru, Swarupa Soma Bangaru, Hyun-Woo Jin, Adnan Ozekcin, Raghavan Ayer, Douglas P. Fairchild, Danny L. Beeson, Douglas S. Hoyt, James B. LeBleu, Jr., Shigeru Endo, Mitsuhiro Okatsu, Shinichi Kakihara, Moriyasu Nagae
  • Patent number: 9598947
    Abstract: Methods and systems for controlling drilling operations include using a statistical model to identify at least two controllable drilling parameters having significant correlation to one or more drilling performance measurements. The methods and systems further generate operational recommendations for at least two controllable drilling parameters based at least in part on the statistical model. The operational recommendations are selected to optimize one or more drilling performance measurements.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: March 21, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jingbo Wang, Krishnan Kumaran, Peng Xu, Steven F. Sowers, Lei Wang, Jeffrey R. Bailey, Erika A. O. Biediger, Vishwas Gupta, Narasimha-Rao V. Bangaru, Swarupa S. Bangaru
  • Publication number: 20120132437
    Abstract: The present invention discloses apparatuses, systems, and methods for operating a gas well. Some embodiments include a plunger apparatus configured to fall through a continuous water phase (including water slugs) in a gas producing well by overcoming pressure and drag 5 forces from the water by having a sufficient mass, hydrodynamic profile, and sufficiently large area for passage of the continuous water. In one embodiment, a plunger body and plug mechanism are provided, wherein the plug mechanism has open and closed positions, which may be automatically changed or controlled by a surface or other control system, and wherein the plunger body and plug may be a physically integrated one-piece system, or an interoperable two piece system.
    Type: Application
    Filed: May 20, 2010
    Publication date: May 31, 2012
    Inventors: Ming Gong, Larry E. Harrison, Theodore W. Pirog, Robert D. Kaminsky, Pietro Valsecchi, Jeffrey R. Bailey, Narasimha-Rao V. Bangaru, Swarupa S. Bangaru
  • Publication number: 20120118637
    Abstract: Methods and systems for controlling drilling operations include using a statistical model to identify at least one controllable drilling parameter having significant correlation to an objective function incorporating two or more drilling performance measurements. The methods and systems further generate operational recommendations for at least one controllable drilling parameter based at least in part on the statistical model. The operational recommendations are selected to optimize the objective function.
    Type: Application
    Filed: June 28, 2010
    Publication date: May 17, 2012
    Inventors: Jingbo Wang, Krishnan Kumaran, Peng Xu, Steven F, Sovers, Lei Wang, Jeffrey R. Bailey, Erika A.O. Biediger, Vishwas Gupta, Swarupa S. Bangaru, Narasimha-Rao V. Bangaru
  • Publication number: 20120123756
    Abstract: Methods and systems for controlling drilling operations include using a statistical model to identify at least two controllable drilling parameters having significant correlation to one or more drilling performance measurements. The methods and systems further generate operational recommendations for at least two controllable drilling parameters based at least in part on the statistical model. The operational recommendations are selected to optimize one or more drilling performance measurements.
    Type: Application
    Filed: June 28, 2010
    Publication date: May 17, 2012
    Inventors: Jingbo Wang, Krishnan Kumaran, Peng Xu, Steven F. Sowers, Lei Wang, Jeffrey R. Bailey, Erika A.O. Biediger, Vishwas Gupta, Narasimha-Rao V. Bangaru, Swarupa S. Bangaru
  • Publication number: 20110120723
    Abstract: The present application describes a steel composition that provides enhanced corrosion resistance. This steel composition includes one of vanadium in an amount of 1 wt % to 9 wt %, titanium in an amount of about 1 wt % to 9 wt %, and a combination of vanadium and titanium in an amount of 1 wt % to about 9 wt %. In addition, the steel composition includes carbon in an amount of 0.03 wt % to about 0.45 wt %, manganese in an amount up to 2 wt % and silicon in an amount up to 0.45 wt %. In one embodiment, the steel composition includes a microstructure of one of the following: ferrite, martensite, tempered martensite, dual phase ferrite and martensite, and dual phase ferrite and tempered martensite. Further, the present application describes a method for processing the steel composition and use of equipment such as oil country tubular goods, fabricated with the steel composition.
    Type: Application
    Filed: May 2, 2008
    Publication date: May 26, 2011
    Inventors: Dylan V. Pugh, Joseph C. Bondos, Shiun Ling, Raghavan Ayer, Shalawn K. Jackson, Narasimha-Rao V. Bangaru, Swarupa S. Bangaru, Jayoung Koo
  • Publication number: 20110104384
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 5, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: John R. Peterson, Narasimha-Rao V. Bangaru, Robert Lee Antram, Christopher John Fowler, Neeraj S. Thirumalai, ChangMin Chun, Emery B. Lendvai-Lintner
  • Publication number: 20110104383
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 5, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: JOHN ROGER PETERSON, NARASIMHA-RAO V. BANGARU, ROBERT LEE ANTRAM, CHRISTOPHER JOHN FOWLER, NEERAJ S. THIRUMALAI, CHANGMIN CHUN, EMERY B. LENDVAI-LINTNER
  • Publication number: 20110094627
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 28, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: John R. Peterson, Narasimha-Rao V. Bangaru, Robert Lee Antram, Christopher John Fowler, Neeraj S. Thirumalai, ChangMin Chun, Emery B. Lendvai-Lintner
  • Publication number: 20110077924
    Abstract: Methods and systems of reducing drilling vibrations include generation a vibration performance index using at least one frequency-domain model having a velocity-dependent friction relationship. The vibration performance index may be used to aid in the design or manufacture of a drill tool assembly. Additionally or alternatively, the vibration performance index may inform drilling operations to reduce vibrations.
    Type: Application
    Filed: May 28, 2009
    Publication date: March 31, 2011
    Inventors: Mehmet Deniz Ertas, Erika A.O. Biediger, Shankar Sundararaman, Jeffrey R. Bailey, Vishwas Gupta, Narasimha-Rao V. Bangaru, Swarupa Soma Bangaru
  • Patent number: 7842139
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John R. Peterson, Narasimha-Rao V. Bangaru, Robert Lee Antram, Christopher John Fowler, Neeraj S. Thirumalai, ChangMin Chun, Emery B. Lendvai-Lintner
  • Patent number: 7731776
    Abstract: Multimodal cermet compositions comprising a multimodal grit distribution of the ceramic phase and method of making are provided by the present invention. The multimodal cermet compositions include a) a ceramic phase and b) a metal binder phase, wherein the ceramic phase is a metal boride with a multimodal distribution of particles, wherein at least one metal is selected from the group consisting of Group IV, Group V, Group VI elements of the Long Form of The Periodic Table of Elements and mixtures thereof, and wherein the metal binder phase comprises at least one first element selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, and at least second element selected from the group consisting of Cr, Al, Si and Y, and Ti.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: June 8, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Narasimha-Rao V. Bangaru, Neeraj S. Thirumalai, Hyun-Woo Jin, Jayoung Koo, John R. Peterson, Robert L. Antram, Christopher J. Fowler, Emery B. Lendvai-Lintner
  • Patent number: 7544228
    Abstract: One form of the disclosure includes a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Al, Si, Mg, Ca, Y, Fe, Mn, Group IV, Group V, Group VI elements, and mixtures thereof, Q is oxide, R is a base metal selected from the group consisting of Fe, Ni Co, Mn and mixtures thereof, S consists essentially of at least one element selected from Cr, Al and Si and at least one reactive wetting element selected from the group consisting of Ti, Zr, Hf, Ta, Sc, Y, La, and Ce, wherein the ceramic phase (PQ) ranges from about 55 to 95 vol % based on the volume of the cermet and is dispersed in the binder phase (RS) as particles with a diameter of 100 microns or greater. Another form of the disclosure relates to a bimodal size distribution of the metal oxide ceramic phase within the metal matrix phase.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: June 9, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Narasimha-Rao V. Bangaru, John R. Peterson, Robert L. Antram, Christopher J. Fowler
  • Publication number: 20080003125
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m 1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Inventors: John R. Peterson, Narasimha-Rao V. Bangaru, Robert Lee Antram, Christopher John Fowler, Neeraj S. Thirumalai, ChangMin Chun, Emery B. Lendvai-Lintner
  • Patent number: 7048810
    Abstract: A method for processing a hot formed, high-tensile-strength steel having an ultimate tensile strength (UTS) of at least about 730 MPa (105 ksi) and excellent toughness to retain essentially all the strength and toughness is provided. This processing is needed for the fabrication of high strength fittings that are used in the construction of linepipe for transport of natural gas, crude oil, as well as other applications. Furthermore, the hot formed high strength steel may be weldable with a Pcm of less than or equal to 0.35.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: May 23, 2006
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Clifford W. Petersen, Jayoung Koo, Narasimha-Rao V. Bangaru, Michael J. Luton
  • Publication number: 20030098096
    Abstract: A method for processing a hot formed, high-tensile-strength steel having an ultimate tensile strength (UTS) of at least about 730 MPa (105 ksi) and excellent toughness to retain essentially all the strength and toughness is provided. This processing is needed for the fabrication of high strength fittings that are used in the construction of linepipe for transport of natural gas, crude oil, as well as other applications. Furthermore, the hot formed high strength steel may be weldable with a Pcm of less than or equal to 0.35.
    Type: Application
    Filed: September 24, 2002
    Publication date: May 29, 2003
    Inventors: Clifford W. Petersen, Jayoung Koo, Narasimha-Rao V. Bangaru, Michael J. Luton
  • Patent number: 6565678
    Abstract: Weld metals suitable for joining high strength, low alloy steels are provided. These weld metals have microstructures of acicular ferrite interspersed in a hard constituent, such as lath martensite, yield strengths of at least about 690 MPa (100 ksi), and DBTTs lower than about −50° C. (−58° F.) as measured by a Charpy energy versus temperature curve. These weld metals include about 0.04 wt % to about 0.08 wt % carbon; about 1.0 wt % to about 2.0 wt % manganese; about 0.2 wt % to about 0.7 wt % silicon; about 0.30 wt % to 0.80 wt % molybdenum; about 2.3 wt % to about 3.5 wt % nickel; about 0.0175 wt % to about 0.0400 wt % oxygen, and at least one additive selected from the group consisting of (i) up to about 0.04 wt % zirconium, and (ii) up to about 0.02 wt % titanium.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: May 20, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Douglas P. Fairchild, Jayoung Koo, Narasimha-Rao V. Bangaru, Mario Luis Macia, Danny Lee Beeson, Adnan Ozekcin
  • Publication number: 20020043305
    Abstract: Weld metals suitable for joining high strength, low alloy steels are provided. These weld metals have microstructures of acicular ferrite interspersed in a hard constituent, such as lath martensite, yield strengths of at least about 690 MPa (100 ksi), and DBTTs lower than about −50° C. (−58° F.) as measured by a Charpy energy versus temperature curve. These weld metals include about 0.04 wt % to about 0.08 wt % carbon; about 1.0 wt % to about 2.0 wt % manganese; about 0.2 wt % to about 0.7 wt % silicon; about 0.30 wt % to 0.80 wt % molybdenum; about 2.3 wt % to about 3.5 wt % nickel; about 0.0175 wt % to about 0.0400 wt % oxygen, and at least one additive selected from the group consisting of (i) up to about 0.04 wt % zirconium, and (ii) up to about 0.02 wt % titanium.
    Type: Application
    Filed: August 2, 2001
    Publication date: April 18, 2002
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Douglas P. Fairchild, Jayoung Koo, Narasimha-Rao V. Bangaru, Mario Luis Macia, Danny Lee Beeson, Adnan Ozekcin
  • Patent number: 6264760
    Abstract: An ultra-high strength steel having excellent ultra-low temperature toughness, a tensile strength of at least about 930 MPa (135 ksi), and a microstructure comprising predominantly fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof, transformed from substantially unrecrystallized austenite grains and comprising iron and specified weight percentages of the additives: carbon, silicon, manganese, copper, nickel, niobium, vanadium, molybdenum, chromium, titanium, aluminum, calcium, Rare Earth Metals, and magnesium, is prepared by heating a steel slab to a suitable temperature; reducing the slab to form plate in one or more hot rolling passes in a first temperature range in which austenite recrystallizes; further reducing said plate in one or more hot rolling passes in a second temperature range below said first temperature range and above the temperature at which austenite begins to transform to ferrite during cooling; quenching said plate to a suitable Quench Stop Temperature; and stop
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: July 24, 2001
    Assignees: ExxonMobil Upstream Research Company, Nippon Steel Corporation
    Inventors: Hiroshi Tamehiro, Hitoshi Asahi, Takuya Hara, Yoshio Terada, Michael J. Luton, Jayoung Koo, Narasimha-Rao V. Bangaru, Clifford W. Petersen
  • Patent number: 6254698
    Abstract: An ultra-high strength, weldable, low alloy steel with excellent cryogenic temperature toughness in the base plate and in the heat affected zone (HAZ) when welded, having a tensile strength greater than about 830 MPa (120 ksi) and a microstructure comprising (i) predominantly fine-grained lower bainite, fine-grained lath martensite, fine granular bainite (FGB), or mixtures thereof, and (ii) up to about 10 vol % retained austenite, is prepared by heating a steel slab comprising iron and specified weight percentages of some or all of the additives carbon, manganese, nickel, nitrogen, copper, chromium, molybdenum, silicon, niobium, vanadium, titanium, aluminum, and boron; reducing the slab to form plate in one or more passes in a temperature range in which austenite recrystallizes; finish rolling the plate in one or more passes in a temperature range below the austenite recrystallization temperature and above the Ar3 transformation temperature; quenching the finish rolled plate to a suitable Quench Stop Temperat
    Type: Grant
    Filed: December 19, 1998
    Date of Patent: July 3, 2001
    Assignee: ExxonMobile Upstream Research Company
    Inventors: Jayoung Koo, Narasimha-Rao V. Bangaru, Glen A. Vaughn, Raghavan Ayer