Patents by Inventor Narayan Sundararajan

Narayan Sundararajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9464109
    Abstract: A method for the introduction of a labeling structure such as fluorescent molecules or a Raman tag to a compound is described. Imidazole functionalized resins or polymers are used to selectively immobilize phosphocompounds without protecting the carboxylic groups is described. Relying on the pKa difference between amines and hydrazides and carrying out the reaction in a slightly acidic buffer, all of the amines are protected by protonation while the hydrazides react with the phosphate imidazolide to form a phosphoramidate bond.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: October 11, 2016
    Assignee: INTEL CORPORATION
    Inventors: Handong Li, Narayan Sundararajan
  • Patent number: 9096953
    Abstract: The embodiments of the invention relate to a system and method for making a biomolecule microarray comprising a spacer attachment module adapted to attach a linker to a substrate surface of the biomolecule microarray, a coupling module adapted to couple a molecule to the linker, the molecule being capable of forming a peptide bond and containing a protecting group that prevents the formation of the peptide bond, and a deprotection module adapted to create deprotection of the protecting group with a radiation exposure of about 1-50 mJ/cm2.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: August 4, 2015
    Assignee: INTEL CORPORATION
    Inventors: Narayan Sundararajan, John J. Rajasekaran, Guangyu Xu, Gunjan Tiwari, Edelmira Cabezas
  • Publication number: 20150031853
    Abstract: The embodiments of the invention relate to a method for the introduction of a labeling structure such as a fluorescent molecules or a Raman tags to a compound. Imidazole functionalized resins or polymers are used to selectively immobilize phosphocompounds without protecting the carboxylic groups. Relying on the pKa difference between amines and hydrazides and carrying out the reaction in a slightly acidic buffer, all of the amines are protected by protonation while the hydrazides react with the phosphate imidazolide to form a phosphoramidate bond.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 29, 2015
    Inventors: Handong LI, Narayan SUNDARARAJAN
  • Publication number: 20150004628
    Abstract: Embodiments of the invention relate to integrated chemiluminescence devices and methods for monitoring molecular binding utilizing these devices and methods. These devices and methods can be used, for example, to identify antigen binding to antibodies. The devices include both a chemiluminescence material and a detector integrated together.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 1, 2015
    Inventors: Narayan SUNDARARAJAN, Tae-Woong KOO
  • Patent number: 8859734
    Abstract: The embodiments of the invention relate to a method for the introduction of a labeling structure such as a fluorescent molecules or a Raman tags to a compound. Imidazole functionalized resins or polymers are used to selectively immobilize phosphocompounds without protecting the carboxylic groups. Relying on the pKa difference between amines and hydrazides and carrying out the reaction in a slightly acidic buffer, all of the amines are protected by protonation while the hydrazides react with the phosphate imidazolide to form a phosphoramidate bond.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: October 14, 2014
    Assignee: Intel Corporation
    Inventors: Handong Li, Narayan Sundararajan
  • Patent number: 8709355
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210. Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: April 29, 2014
    Assignee: Intel Corporation
    Inventors: Selena Chan, Sunghoon Kwon, Narayan Sundararajan
  • Publication number: 20130243656
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210, Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution, 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Application
    Filed: December 28, 2012
    Publication date: September 19, 2013
    Inventors: Selena CHAN, Sunghoon Kwon, Narayan Sundararajan
  • Publication number: 20130186767
    Abstract: Described are devices and methods for detecting binding on an electrode surface. In addition, devices and methods for electrochemically synthesizing polymers and devices and methods for synthesizing and detecting binding to the polymer on a common integrated device surface are described.
    Type: Application
    Filed: December 22, 2012
    Publication date: July 25, 2013
    Inventors: Hernan Adolfo CASTRO, Gordon Holt, Brandon Barnett, Handong Li, Narayan Sundararajan, Wei Wang
  • Patent number: 8465698
    Abstract: Microfluidic apparatus including integrated porous substrate/sensors that may be used for detecting targeted biological and chemical molecules and compounds. In one aspect, upper and lower microfluidic channels are defined in respective halves of a substrate, which are sandwiched around a porous membrane upon assembly. In other aspect, the upper and lower channels are formed such that a portion of the lower channel passes beneath a portion of the upper channel to form a cross-channel area, wherein the membrane is disposed between the two channels. In various embodiments, one or more porous membranes are disposed proximate to corresponding cross-channel areas defined by one or more upper and lower channels. The porous membrane may also have sensing characteristics, such that it produces a change in an optical and/or electronic characteristic.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: June 18, 2013
    Assignee: Intel Corporation
    Inventors: Mineo Yamakawa, John Heck, Selena Chan, Narayan Sundararajan
  • Patent number: 8367017
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210. Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: February 5, 2013
    Assignee: Intel Corporation
    Inventors: Selena Chan, Sunghoon Kwon, Narayan Sundararajan
  • Patent number: 8338097
    Abstract: Described are devices and methods for detecting binding on an electrode surface. In addition, devices and methods for electrochemically synthesizing polymers and devices and methods for synthesizing and detecting binding to the polymer on a common integrated device surface are described.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 25, 2012
    Assignee: Intel Corporation
    Inventors: Hernan Castro, Gordon Holt, Brandon Barnett, Handong Li, Narayan Sundararajan, Wei Wang
  • Patent number: 8288167
    Abstract: Embodiments of the invention relate to integrated chemiluminescence devices and methods for monitoring molecular binding utilizing these devices and methods. These devices and methods can be used, for example, to identify antigen binding to antibodies. The devices include both a chemiluminescence material and a detector integrated together.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 16, 2012
    Assignee: Intel Corporation
    Inventors: Narayan Sundararajan, Tae-Woong Koo
  • Publication number: 20120141329
    Abstract: Microfluidic apparatus including integrated porous substrate/sensors that may be used for detecting targeted biological and chemical molecules and compounds. In one aspect, upper and lower microfluidic channels are defined in respective halves of a substrate, which are sandwiched around a porous membrane upon assembly. In other aspect, the upper and lower channels are formed such that a portion of the lower channel passes beneath a portion of the upper channel to form a cross-channel area, wherein the membrane is disposed between the two channels. In various embodiments, one or more porous membranes are disposed proximate to corresponding cross-channel areas defined by one or more upper and lower channels. The porous membrane may also have sensing characteristics, such that it produces a change in an optical and/or electronic characteristic.
    Type: Application
    Filed: October 13, 2011
    Publication date: June 7, 2012
    Inventors: Mineo YAMAKAWA, John HECK, Selena CHAN, Narayan SUNDARARAJAN
  • Patent number: 8153079
    Abstract: Microfluidic apparatus including integrated porous substrate/sensors that may be used for detecting targeted biological and chemical molecules and compounds. In one aspect, upper and lower microfluidic channels are defined in respective halves of a substrate, which are sandwiched around a porous membrane upon assembly. In other aspect, the upper and lower channels are formed such that a portion of the lower channel passes beneath a portion of the upper channel to form a cross-channel area, wherein the membrane is disposed between the two channels. In various embodiments, one or more porous membranes are disposed proximate to corresponding cross-channel areas defined by one or more upper and lower channels. The porous membrane may also have sensing characteristics, such that it produces a change in an optical and/or electronic characteristic.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 10, 2012
    Assignee: Intel Corporation
    Inventors: Mineo Yamakawa, John Heck, Selena Chan, Narayan Sundararajan
  • Publication number: 20110224092
    Abstract: Described are devices and methods for detecting binding on an electrode surface. In addition, devices and methods for electrochemically synthesizing polymers and devices and methods for synthesizing and detecting binding to the polymer on a common integrated device surface are described.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 15, 2011
    Applicant: INTEL CORPORATION
    Inventors: Hernan Adolfo CASTRO, Gordon Holt, Brandon Barnett, Handong Li, Narayan Sundararajan, Wei Wang
  • Patent number: 8003408
    Abstract: A SERS active particle having a metal-containing particle and a cationic coating on the metal-containing particle, wherein the SERS active particle carries a positive charge is disclosed. Also, a SERS active particle having a metal-containing particle and a non-metallic molecule, wherein the metal-containing particle is derivatized with the non-metallic molecule is disclosed. In addition, several methods of modifying the nanoparticles surfaces of a SERS active particle and of improving the interaction between the SERS active particle and an analyte are disclosed.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: August 23, 2011
    Assignee: Intel Corporation
    Inventors: Jingwu Zhang, Narayan Sundararajan, Sarah M. Ngola, Handong Li
  • Patent number: 7923237
    Abstract: Described are devices and methods for detecting binding on an electrode surface. In addition, devices and methods for electrochemically synthesizing polymers and devices and methods for synthesizing and detecting binding to the polymer on a common integrated device surface are described.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 12, 2011
    Assignee: Intel Corporation
    Inventors: Hernan Adolfo Castro, Gordon Holt, Brandon Barnett, Handong Li, Narayan Sundararajan, Wei Wang
  • Publication number: 20100267013
    Abstract: The methods and apparatus disclosed herein concern nucleic acid sequencing by enhanced Raman spectroscopy. In certain embodiments of the invention, nucleotides are covalently attached to Raman labels before incorporation into a nucleic acid. In other embodiments, unlabeled nucleic acids are used. Exonuclease treatment of the nucleic acid results in the release of labeled or unlabeled nucleotides that are detected by Raman spectroscopy. In alternative embodiments of the invention, nucleotides released from a nucleic acid by exonuclease treatment are covalently cross-linked to nanoparticles and detected by surface enhanced Raman spectroscopy (SERS), surface enhanced resonance Raman spectroscopy (SERRS) and/or coherent anti-Stokes Raman spectroscopy (CARS). Other embodiments of the invention concern apparatus for nucleic acid sequencing.
    Type: Application
    Filed: May 24, 2007
    Publication date: October 21, 2010
    Applicant: INTEL CORPORATION
    Inventors: Xing Su, Andrew Arthur Berlin, Selena Chan, Steven J. Kirch, Tae-Woong Koo, Gabi Neubauer, Valluri Rao, Narayan Sundararajan, Mineo Yamakawa
  • Publication number: 20100240555
    Abstract: The embodiments of the invention relate to a system and method for making a biomolecule microarray comprising a spacer attachment module adapted to attach a linker to a substrate surface of the biomolecule microarray, a coupling module adapted to couple a molecule to the linker, the molecule being capable of forming a peptide bond and containing a protecting group that prevents the formation of the peptide bond, and a deprotection module adapted to create deprotection of the protecting group with a radiation exposure of about 1-50 mJ/cm2.
    Type: Application
    Filed: September 29, 2006
    Publication date: September 23, 2010
    Inventors: Narayan Sundararajan, John J. Rajasekaran, Guangyu Xu, Gunjan Tiwari, Edelmira Cabezas
  • Patent number: 7771661
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210. Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: August 10, 2010
    Assignee: Intel Corporation
    Inventors: Selena Chan, Sunghoon Kwon, Narayan Sundararajan