Patents by Inventor Narayanan Sundararajan

Narayanan Sundararajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8934683
    Abstract: In certain embodiments of the invention, a plurality of images of one or more subjects may be captured using different imaging techniques, such as different modalities of scanning probe microscopy. Parameters may be estimated from the plurality of images, using one or more models of known molecular structures to provide a model-based analysis. The estimated parameters may be fused, with further input from physical models of known molecular structures. The fused parameters may be used to characterize the subjects. Such characterization may include the detection and/or identification of specific molecular structures, such as proteins, peptides and/or nucleic acids of known sequence and/or structure. In some embodiments of the invention the structural characterizations may be used to identify previously unknown properties of a subject molecule.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: January 13, 2015
    Assignee: Intel Corporation
    Inventors: Horst Haussecker, Andrew A. Berlin, Selena Chan, Eric Hannah, Narayanan Sundararajan, Mineo Yamakawa
  • Patent number: 8883091
    Abstract: A micro-fluidic device containing a micro-fluidic inlet channel to convey a process flow, a plurality of micro-fluidic focusing channels to each convey one of a plurality of focusing flows, a focusing manifold coupled with the inlet channel at an inlet port thereof and with the plurality of focusing channels at a plurality of focusing channel ports thereof to focus the process flow by contacting and hydrodynamically impacting at least three sides of the process flow with the focusing flows, and a micro-fluidic outlet channel coupled with the focusing manifold at an outlet channel port to convey the combined focused process flow and focusing flow from the focusing manifold.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: November 11, 2014
    Assignee: Intel Corporation
    Inventors: Narayanan Sundararajan, Andrew Berlin
  • Patent number: 8647821
    Abstract: Described are devices and methods for detecting binding on an electrode surface. In addition, devices and methods for electrochemically synthesizing polymers and devices and methods for synthesizing and detecting binding to the polymer on a common integrated device surface are described.
    Type: Grant
    Filed: December 22, 2012
    Date of Patent: February 11, 2014
    Assignee: Intel Corporation
    Inventors: Hernan A. Castro, Gordon D. Holt, Brandon C. Barnett, Handong Li, Narayanan Sundararajan, Wei Wang
  • Patent number: 7850907
    Abstract: Forming a structure attached to a micro-fluidic channel based on hydrodynamic focusing is disclosed. In one aspect, a polymerizable fluid and a focusing fluid may be introduced into a hydrodynamic focusing system. The polymerizable fluid may be hydrodynamically focused with the focusing fluid. Then the focused polymerizable fluid may be polymerized to form a structure attached to a channel of the hydrodynamic focusing system.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventor: Narayanan Sundararajan
  • Publication number: 20100151454
    Abstract: Disclosed herein are methods, apparatuses, and systems for performing nucleic acid sequencing reactions and molecular binding reactions in a microfluidic channel. The methods, apparatuses, and systems can include a restriction barrier to restrict movement of a particle to which a nucleic acid is attached. Furthermore, the methods, apparatuses, and systems can include hydrodynamic focusing of a delivery flow. In addition, the methods, apparatuses, and systems can reduce non-specific interaction with a surface of the microfluidic channel by providing a protective flow between the surface and a delivery flow.
    Type: Application
    Filed: October 22, 2008
    Publication date: June 17, 2010
    Inventors: Narayanan Sundararajan, Lei Sun, Yuegang Zhang, Xing Su, Selena Chan, Tae-Woong Koo, Andrew A. Berlin
  • Patent number: 7638339
    Abstract: A micro-fluidic device containing a micro-fluidic inlet channel to convey a process flow, a plurality of micro-fluidic focusing channels to each convey one of a plurality of focusing flows, a focusing manifold coupled with the inlet channel at an inlet port thereof and with the plurality of focusing channels at a plurality of focusing channel ports thereof to focus the process flow by contacting and hydrodynamically impacting at least three sides of the process flow with the focusing flows, and a micro-fluidic outlet channel coupled with the focusing manifold at an outlet channel port to convey the combined focused process flow and focusing flow from the focusing manifold.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: December 29, 2009
    Assignee: Intel Corporation
    Inventors: Narayanan Sundararajan, Andrew Berlin
  • Publication number: 20090262994
    Abstract: In certain embodiments of the invention, a plurality of images of one or more subjects may be captured using different imaging techniques, such as different modalities of scanning probe microscopy. Parameters may be estimated from the plurality of images, using one or more models of known molecular structures to provide a model-based analysis. The estimated parameters may be fused, with further input from physical models of known molecular structures. The fused parameters may be used to characterize the subjects. Such characterization may include the detection and/or identification of specific molecular structures, such as proteins, peptides and/or nucleic acids of known sequence and/or structure. In some embodiments of the invention the structural characterizations may be used to identify previously unknown properties of a subject molecule.
    Type: Application
    Filed: January 26, 2009
    Publication date: October 22, 2009
    Inventors: Horst Haussecker, Andrew A. Berlin, Selena Chan, Eric Hannah, Narayanan Sundararajan, Mineo Yamakawa
  • Patent number: 7606403
    Abstract: In certain embodiments of the invention, a plurality of images of one or more subjects may be captured using different imaging techniques, such as different modalities of scanning probe microscopy. Parameters may be estimated from the plurality of images, using one or more models of known molecular structures to provide a model-based analysis. The estimated parameters may be fused, with further input from physical models of known molecular structures. The fused parameters may be used to characterize the subjects. Such characterization may include the detection and/or identification of specific molecular structures, such as proteins, peptides and/or nucleic acids of known sequence and/or structure. In some embodiments of the invention the structural characterizations may be used to identify previously unknown properties of a subject molecule.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: October 20, 2009
    Assignee: Intel Corporation
    Inventors: Horst Haussecker, Andrew A. Berlin, Selena Chan, Eric Hannah, Narayanan Sundararajan, Mineo Yamakawa
  • Publication number: 20090170725
    Abstract: The methods, apparatus and systems disclosed herein concern ordered arrays of carbon nanotubes. In particular embodiments of the invention, the nanotube arrays are formed by a method comprising attaching catalyst nanoparticles 140, 230 to polymer 120, 210 molecules, attaching the polymer 120, 210 molecules to a substrate, removing the polymer 120, 210 molecules and producing carbon nanotubes on the catalyst nanoparticles 140, 230. The polymer 120, 210 molecules can be attached to the substrate in ordered patterns, using self-assembly or molecular alignment techniques. The nanotube arrays can be attached to selected areas 110, 310 of the substrate. Within the selected areas 110, 310, the nanotubes are distributed non-randomly. Other embodiments disclosed herein concern apparatus that include ordered arrays of nanotubes attached to a substrate and systems that include ordered arrays of carbon nanotubes attached to a substrate, produced by the claimed methods.
    Type: Application
    Filed: January 31, 2006
    Publication date: July 2, 2009
    Inventors: Mineo Yamakawa, Yuegang Zhang, Xing Su, Lei Sun, Andrew A. Berlin, Narayanan Sundararajan
  • Publication number: 20090169466
    Abstract: The methods, apparatus and systems disclosed herein concern ordered arrays of carbon nanotubes. In particular embodiments of the invention, the nanotube arrays are formed by a method comprising attaching catalyst nanoparticles 140, 230 to polymer 120, 210 molecules, attaching the polymer 120, 210 molecules to a substrate, removing the polymer 120, 210 molecules and producing carbon nanotubes on the catalyst nanoparticles 140, 230. The polymer 120, 210 molecules can be attached to the substrate in ordered patterns, using self-assembly or molecular alignment techniques. The nanotube arrays can be attached to selected areas 110, 310 of the substrate. Within the selected areas 110, 310, the nanotubes are distributed non-randomly. Other embodiments disclosed herein concern apparatus that include ordered arrays of nanotubes attached to a substrate and systems that include ordered arrays of carbon nanotubes attached to a substrate, produced by the claimed methods.
    Type: Application
    Filed: January 31, 2006
    Publication date: July 2, 2009
    Inventors: Mineo Yamakawa, Yuegang Zhang, Xing Su, Lei Sun, Andrew A. Berlin, Narayanan Sundararajan
  • Patent number: 7442339
    Abstract: Disclosed herein are methods, apparatuses, and systems for performing nucleic acid sequencing reactions and molecular binding reactions in a microfluidic channel. The methods, apparatuses, and systems can include a restriction barrier to restrict movement of a particle to which a nucleic acid is attached. Furthermore, the methods, apparatuses, and systems can include hydrodynamic focusing of a delivery flow. In addition, the methods, apparatuses, and systems can reduce non-specific interaction with a surface of the microfluidic channel by providing a protective flow between the surface and a delivery flow.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: October 28, 2008
    Assignee: Intel Corporation
    Inventors: Narayanan Sundararajan, Lei Sun, Yuegang Zhang, Xing Su, Selena Chan, Tae-Woong Koo, Andrew A. Berlin
  • Patent number: 7400395
    Abstract: The disclosed methods and apparatus concern Raman spectroscopy using metal coated nanocrystalline porous silicon substrates. Porous silicon substrates may be formed by anodic etching in dilute hydrofluoric acid. A thin coating of a Raman active metal, such as gold or silver, may be coated onto the porous silicon by cathodic electromigration or any known technique. In certain alternatives, the metal coated porous silicon substrate comprises a plasma-oxidized, dip and decomposed porous silicon substrate. The metal-coated substrate provides an extensive, metal rich environment for SERS, SERRS, hyper-Raman and/or CARS Raman spectroscopy. In certain alternatives, metal nanoparticles may be added to the metal-coated substrate to further enhance the Raman signals. Raman spectroscopy may be used to detect, identify and/or quantify a wide variety of analytes, using the disclosed methods and apparatus.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: July 15, 2008
    Assignee: Intel Corporation
    Inventors: Selena Chan, Andrew A. Berlin, Sunghoon Kwon, Narayanan Sundararajan, Mineo Yamakawa
  • Patent number: 7381361
    Abstract: Forming a structure attached to a micro-fluidic channel based on hydrodynamic focusing is disclosed. In one aspect, a polymerizable fluid and a focusing fluid may be introduced into a hydrodynamic focusing system. The polymerizable fluid may be hydrodynamically focused with the focusing fluid. Then the focused polymerizable fluid may be polymerized to form a structure attached to a channel of the hydrodynamic focusing system.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: June 3, 2008
    Assignee: Intel Corporation
    Inventor: Narayanan Sundararajan
  • Publication number: 20080032297
    Abstract: The methods and apparatus disclosed herein concern nucleic acid sequencing by enhanced Raman spectroscopy. In certain embodiments of the invention, nucleotides are covalently attached to Raman labels before incorporation into a nucleic acid. In other embodiments, unlabeled nucleic acids are used. Exonuclease treatment of the nucleic acid results in the release of labeled or unlabeled nucleotides that are detected by Raman spectroscopy. In alternative embodiments of the invention, nucleotides released from a nucleic acid by exonuclease treatment are covalently cross-linked to nanoparticles and detected by surface enhanced Raman spectroscopy (SERS), surface enhanced resonance Raman spectroscopy (SERRS) and/or coherent anti-Stokes Raman spectroscopy (CARS). Other embodiments of the invention concern apparatus for nucleic acid sequencing.
    Type: Application
    Filed: February 9, 2007
    Publication date: February 7, 2008
    Applicant: INTEL CORPORATION
    Inventors: Xing Su, Andrew Berlin, Selena Chan, Steven Kirch, Tae-Woong Koo, Gabi Neubauer, Valluri Rao, Narayanan Sundararajan, Mineo Yamakawa
  • Patent number: 7302832
    Abstract: A surface analysis device is disclosed for identifying molecules by simultaneously scanning nanocodes on a surface of a substrate. The device includes a scanning array that is capable of simultaneously scanning the nanocodes on the surface of the substrate and an analyzer that is coupled with the scanning array. The analyzer is capable of receiving simultaneously scanned information from the scanning array and identifying molecules associated with the nanocodes.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: December 4, 2007
    Assignee: Intel Corporation
    Inventors: Andrew Berlin, Narayanan Sundararajan, Mineo Yamakawa, Valluri R. Rao
  • Patent number: 7238477
    Abstract: The methods and apparatus disclosed herein concern nucleic acid sequencing by enhanced Raman spectroscopy. In certain embodiments of the invention, nucleotides are covalently attached to Raman labels before incorporation into a nucleic acid. In other embodiments, unlabeled nucleic acids are used. Exonuclease treatment of the nucleic acid results in the release of labeled or unlabeled nucleotides that are detected by Raman spectroscopy. In alternative embodiments of the invention, nucleotides released from a nucleic acid by exonuclease treatment are covalently cross-linked to nanoparticles and detected by surface enhanced Raman spectroscopy (SERS), surface enhanced resonance Raman spectroscopy (SERRS) and/or coherent anti-Stokes Raman spectroscopy (CARS). Other embodiments of the invention concern apparatus for nucleic acid sequencing.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: July 3, 2007
    Assignee: Intel Corporation
    Inventors: Xing Su, Andrew A. Berlin, Selena Chan, Steven J. Kirch, Tac-Woong Koo, Gabi Neubauer, Valluri Rao, Narayanan Sundararajan, Mineo Yamakawa
  • Publication number: 20070059733
    Abstract: The present methods and apparatus concern nucleic acid sequencing by incorporation of nucleotides into nucleic acid strands. The incorporation of nucleotides is detected by changes in the mass and/or surface stress of the structure. In some embodiments of the invention, the structure comprises one or more nanoscale or microscale cantilevers. In certain embodiments of the invention, each different type of nucleotide is distinguishably labeled with a bulky group and each incorporated nucleotide is identified by the changes in mass and/or surface stress of the structure upon incorporation of the nucleotide. In alternative embodiments of the invention only one type of nucleotide is exposed at a time to the nucleic acids. Changes in the properties of the structure may be detected by a variety of methods, such as piezoelectric detection, shifts in resonant frequency of the structure, and/or position sensitive photodetection.
    Type: Application
    Filed: June 2, 2006
    Publication date: March 15, 2007
    Inventors: Narayanan Sundararajan, Andrew Berlin, Mineo Yamakawa, Xing Su, Selena Chan, Tae-Woong Koo
  • Publication number: 20070054288
    Abstract: The present disclosure concerns methods for producing and/or using molecular barcodes. In certain embodiments of the invention, the barcodes comprise polymer backbones that may contain one or more branch structures. Tags may be attached to the backbone and/or branch structures. The barcode may also comprise a probe that can bind to a target, such as proteins, nucleic acids and other biomolecules or aggregates. Different barcodes may be distinguished by the type and location of the tags. In other embodiments, barcodes may be produced by hybridization of one or more tagged oligonucleotides to a template, comprising a container section and a probe section. The tagged oligonucleotides may be designed as modular code sections, to form different barcodes specific for different targets. In alternative embodiments, barcodes may be prepared by polymerization of monomeric units. Bound barcodes may be detected by various imaging modalities, such as, surface plasmon resonance, fluorescent or Raman spectroscopy.
    Type: Application
    Filed: May 8, 2006
    Publication date: March 8, 2007
    Inventors: Xing Su, Tae-Woong Koo, Andrew Berlin, Lei Sun, Narayanan Sundararajan, Mineo Yamakawa
  • Publication number: 20070036678
    Abstract: A micro-fluidic device containing a micro-fluidic inlet channel to convey a process flow, a plurality of micro-fluidic focusing channels to each convey one of a plurality of focusing flows, a focusing manifold coupled with the inlet channel at an inlet port thereof and with the plurality of focusing channels at a plurality of focusing channel ports thereof to focus the process flow by contacting and hydrodynamically impacting at least three sides of the process flow with the focusing flows, and a micro-fluidic outlet channel coupled with the focusing manifold at an outlet channel port to convey the combined focused process flow and focusing flow from the focusing manifold.
    Type: Application
    Filed: June 9, 2006
    Publication date: February 15, 2007
    Inventors: Narayanan Sundararajan, Andrew Berlin
  • Publication number: 20070026533
    Abstract: A micro-fluidic device containing a micro-fluidic inlet channel to convey a process flow, a plurality of micro-fluidic focusing channels to each convey one of a plurality of focusing flows, a focusing manifold coupled with the inlet channel at an inlet port thereof and with the plurality of focusing channels at a plurality of focusing channel ports thereof to focus the process flow by contacting and hydrodynamically impacting at least three sides of the process flow with the focusing flows, and a micro-fluidic outlet channel coupled with the focusing manifold at an outlet channel port to convey the combined focused process flow and focusing flow from the focusing manifold.
    Type: Application
    Filed: June 9, 2006
    Publication date: February 1, 2007
    Inventors: Narayanan Sundararajan, Andrew Berlin