Patents by Inventor Narayanappa Sivasankar

Narayanappa Sivasankar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140034506
    Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
    Type: Application
    Filed: September 25, 2013
    Publication date: February 6, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur, Narayanappa Sivasankar, Paul Majsztrik, Emily Barton Cole, Andrew B. Bocarsly
  • Patent number: 8641885
    Abstract: Disclosed is a system and method for reducing carbon dioxide into a carbon based product. The system includes an electrochemical cell having a cathode region which includes a cathode and a non-aqueous catholyte; an anode region having an anode and an aqueous or gaseous anolyte; and an ion permeable zone disposed between the anode region and the cathode region. The ion permeable zone is at least one of (i) the interface between the anolyte and the catholyte, (ii) an ion selective membrane; (iii) at least one liquid layer formed of an emulsion or (iv) a hydrophobic or glass fiber separator. The system and method includes a source of energy, whereby applying the source of energy across the anode and cathode reduces the carbon dioxide and produces an oxidation product.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 4, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Jerry J. Kaczur, Emily Barton Cole
  • Publication number: 20140027303
    Abstract: Methods and systems for electrochemical conversion of carbon dioxide to carboxylic acids, glycols, and carboxylates are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to reduce the carbon dioxide to a carboxylic acid intermediate. Step (D) may contact the carboxylic acid intermediate with hydrogen to produce a reaction product.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 30, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly, Narayanappa Sivasankar
  • Publication number: 20140021042
    Abstract: Methods and systems for electrochemical production of urea are disclosed. A method may include, but is not limited to, steps (A) to (B). Step (A) may introduce carbon dioxide and NOx to a solution of an electrolyte and a heterocyclic catalyst in an electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce the carbon dioxide and the NOx into a first sub-product and a second sub-product, respectively. Step (B) may combine the first sub-product and the second sub-product to produce urea.
    Type: Application
    Filed: August 1, 2013
    Publication date: January 23, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly
  • Publication number: 20140021059
    Abstract: Methods and systems for electrochemical production of formic acid are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte and a cathode. The cathode is selected from the group consisting of indium, lead, tin, cadmium, and bismuth. The second compartment may include a pH of between approximately 4 and 7. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to reduce the carbon dioxide to formic acid. Step (D) may maintain a concentration of formic acid in the second compartment at or below approximately 500 ppm.
    Type: Application
    Filed: August 1, 2013
    Publication date: January 23, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Ian Sullivan, Emily Barton Cole, Kyle Teamey, Kunttal Keyshar
  • Publication number: 20140021060
    Abstract: A method for heterocycle catalyzed electrochemical reduction of a carbonyl compound is disclosed. The method generally includes steps (A) to (C). Step (A) may introduce the carbonyl compound into a solution of an electrolyte and a heterocycle catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbonyl compound to at least one aldehyde compound. Step (B) may vary which of the aldehyde compounds is produced by adjusting one or more of (i) a cathode material, (ii) the electrolyte, (iii) the heterocycle catalyst, (iv) a pH level and (v) an electrical potential. Step (C) may separate the aldehyde compounds from the solution.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 23, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Emily Barton Cole, Rishi Parajuli, Andrew B. Bocarsly
  • Patent number: 8592633
    Abstract: Methods and systems for electrochemical conversion of carbon dioxide to carboxylic acids, glycols, and carboxylates are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to reduce the carbon dioxide to a carboxylic acid intermediate. Step (D) may contact the carboxylic acid intermediate with hydrogen to produce a reaction product.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: November 26, 2013
    Assignee: Liquid Light, Inc.
    Inventors: Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly, Narayanappa Sivasankar
  • Publication number: 20130292262
    Abstract: A method for purification of carbon dioxide from a mixture of gases is disclosed. The method generally includes steps (A) and (B). Step (A) may bubble the gases into a solution of an electrolyte and a catalyst in an electrochemical cell. The electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into one or more compounds. The anode may oxidize at least one of the compounds into the carbon dioxide. Step (B) may separate the carbon dioxide from the solution.
    Type: Application
    Filed: June 21, 2013
    Publication date: November 7, 2013
    Inventors: Kyle Teamey, Emily Barton Cole, Narayanappa Sivasankar, Andrew B. Bocarsly
  • Patent number: 8568581
    Abstract: Methods and systems for heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte, a heterocyclic catalyst, and a cathode. Step (C) may introduce a second reactant to the second compartment of the electrochemical cell. Step (D) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to induce liquid phase carbonylation or hydroformylation to form a product mixture.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 29, 2013
    Assignee: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Emily Barton Cole, Kyle Teamey
  • Patent number: 8562811
    Abstract: Methods for electrochemical production of formic acid are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte and a cathode. The cathode is selected from the group consisting of indium, lead, tin, cadmium, and bismuth. The second compartment may include a pH of between approximately 4 and 7. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to reduce the carbon dioxide to formic acid. Step (D) may maintain a concentration of formic acid in the second compartment at or below approximately 500 ppm.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 22, 2013
    Assignee: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Ian Sullivan, Emily Barton Cole, Kyle Teamey, Kunttal Keyshar
  • Patent number: 8524066
    Abstract: Methods and systems for electrochemical production of urea are disclosed. A method may include, but is not limited to, steps (A) to (B). Step (A) may introduce carbon dioxide and NOx to a solution of an electrolyte and a heterocyclic catalyst in an electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce the carbon dioxide and the NOx into a first sub-product and a second sub-product, respectively. Step (B) may combine the first sub-product and the second sub-product to produce urea.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: September 3, 2013
    Assignee: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Emily Cole, Kyle Teamey, Andrew Bocarsly
  • Patent number: 8500987
    Abstract: A method for purification of carbon dioxide from a mixture of gases is disclosed. The method generally includes steps (A) and (B). Step (A) may bubble the gases into a solution of an electrolyte and a catalyst in an electrochemical cell. The electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into one or more compounds. The anode may oxidize at least one of the compounds into the carbon dioxide. Step (B) may separate the carbon dioxide from the solution.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: August 6, 2013
    Assignee: Liquid Light, Inc.
    Inventors: Kyle Teamey, Emily Barton Cole, Narayanappa Sivasankar, Andrew Bocarsly
  • Publication number: 20120277465
    Abstract: Methods and systems for electrochemical conversion of carbon dioxide to carboxylic acids, glycols, and carboxylates are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to reduce the carbon dioxide to a carboxylic acid intermediate. Step (D) may contact the carboxylic acid intermediate with hydrogen to produce a reaction product.
    Type: Application
    Filed: July 5, 2012
    Publication date: November 1, 2012
    Applicant: LIQUID LIGHT, INC.
    Inventors: Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly, Narayanappa Sivasankar
  • Publication number: 20120228147
    Abstract: Methods and systems for electrochemical production of formic acid are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte and a cathode. The cathode is selected from the group consisting of indium, lead, tin, cadmium, and bismuth. The second compartment may include a pH of between approximately 4 and 7. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to reduce the carbon dioxide to formic acid. Step (D) may maintain a concentration of formic acid in the second compartment at or below approximately 500 ppm.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 13, 2012
    Applicant: LIQUID LIGHT, INC.
    Inventors: Narayanappa Sivasankar, Ian Sullivan, Emily Barton Cole, Kyle Teamey, Kunttal Keyshar
  • Publication number: 20120132537
    Abstract: Methods and systems for heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte, a heterocyclic catalyst, and a cathode. Step (C) may introduce a second reactant to the second compartment of the electrochemical cell. Step (D) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to induce liquid phase carbonylation or hydroformylation to form a product mixture.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 31, 2012
    Inventors: Narayanappa Sivasankar, Emily Barton Cole, Kyle Teamey
  • Publication number: 20120132538
    Abstract: Methods and systems for electrochemical production of butanol are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte, a catalyst, and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient for the cathode to reduce the carbon dioxide to a product mixture. Step (D) may separate butanol from the product mixture.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 31, 2012
    Inventors: Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly, Narayanappa Sivasankar
  • Publication number: 20110114503
    Abstract: Methods and systems for electrochemical production of urea are disclosed. A method may include, but is not limited to, steps (A) to (B). Step (A) may introduce carbon dioxide and NOx to a solution of an electrolyte and a heterocyclic catalyst in an electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce the carbon dioxide and the NOx into a first sub-product and a second sub-product, respectively. Step (B) may combine the first sub-product and the second sub-product to produce urea.
    Type: Application
    Filed: September 3, 2010
    Publication date: May 19, 2011
    Applicant: LIQUID LIGHT, INC.
    Inventors: Narayanappa Sivasankar, Emily Cole, Kyle Teamey, Andrew Bocarsly
  • Publication number: 20110114501
    Abstract: A method for purification of carbon dioxide from a mixture of gases is disclosed. The method generally includes steps (A) and (B). Step (A) may bubble the gases into a solution of an electrolyte and a catalyst in an electrochemical cell. The electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into one or more compounds. The anode may oxidize at least one of the compounds into the carbon dioxide. Step (B) may separate the carbon dioxide from the solution.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 19, 2011
    Inventors: Kyle Teamey, Emily Barton Cole, Narayanappa Sivasankar, Andrew Bocarsly
  • Publication number: 20110114502
    Abstract: A method for reducing carbon dioxide to one or more products is disclosed. The method may include steps (A) to (C). Step (A) may bubble the carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into the products. Step (B) may vary at least one of (i) which of the products is produced and (ii) a faradaic yield of the products by adjusting one or more of (a) a cathode material and (b) a surface morphology of the cathode. Step (C) may separate the products from the solution.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 19, 2011
    Inventors: Emily Barton Cole, Narayanappa Sivasankar, Andrew Bocarsly, Kyle Teamey, Nety Krishna
  • Publication number: 20110114504
    Abstract: A method for electrochemical production of synthesis gas from carbon dioxide is disclosed. The method generally includes steps (A) to (C). Step (A) may bubble the carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into a plurality of components. Step (B) may establish a molar ratio of the components in the synthesis gas by adjusting at least one of (i) a cathode material and (ii) a surface morphology of the cathode. Step (C) may separate the synthesis gas from the solution.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 19, 2011
    Inventors: Narayanappa Sivasankar, Emily Barton Cole, Kyle Teamey