Patents by Inventor Narender Shankar Lakshman

Narender Shankar Lakshman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139994
    Abstract: Some embodiments of the present disclosure relate to an additively manufactured transport structure. The transport structure includes cavities into which components that use an external interface are inserted. A plurality of components are assembled and integrated into the vehicle. In an embodiment, the components and frame are modular, enabling reparability and replacement of single parts in the event of isolated failures.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: Kevin Robert Czinger, Broc William Tenhouten, Stuart Paul Macey, David Charles O'Connell, Jon Paul Gunner, Antonio Bernerd Martinez, Narender Shankar Lakshman
  • Patent number: 11897163
    Abstract: Some embodiments of the present disclosure relate to an additively manufactured transport structure. The transport structure includes cavities into which components that use an external interface are inserted. A plurality of components are assembled and integrated into the vehicle. In an embodiment, the components and frame are modular, enabling reparability and replacement of single parts in the event of isolated failures.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: February 13, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, Broc William TenHouten, Stuart Paul Macey, David Charles O'Connell, Jon Paul Gunner, Antonio Bernerd Martinez, Narender Shankar Lakshman
  • Patent number: 11786971
    Abstract: A high precision Interface Node is disclosed. The Interface Node includes an integrated structure including one or more complex or sophisticated features and functions. The Interface Node may connect with another component or a Linking Node. The Interface Node is manufactured to achieve high precision functionality while enabling volume production. Current additive manufacturing technologies allow for the printing of high precision features to be manufactured, but generally this is performed at a slower rate. Consequently, in one aspect, the size of the Interface Nodes is reduced in order to overcome at least part of the slower production volume caused by creating the high precision Interface Nodes. The components and Linking Nodes to which the Interface Node is connected may only have basic features and functions. Accordingly, this latter category of components may use a high print rate and thus high production volume.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: October 17, 2023
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, Broc William TenHouten, Antonio Bernerd Martinez, Steven Blair Massey, Jr., Narender Shankar Lakshman, William David Kreig, Jon Paul Gunner, David Brian TenHouten, Eahab Nagi El Naga, Muhammad Faizan Zafar
  • Patent number: 11673316
    Abstract: Apparatus and methods for additive manufacturing with variable extruder profiles are described herein. An extruder print head with multiple nozzles placed at different angles allows for additional degrees of freedom to additively manufacture parts with complex shapes. In addition with the use of shape memory alloy materials, the diameter of one or more nozzles can be adjusted during the additive manufacturing process. This allows for independent control of the build resolution and of the build rate.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: June 13, 2023
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Narender Shankar Lakshman, Broc William TenHouten
  • Patent number: 11584094
    Abstract: Techniques for inlaying a composite material within a tooling shell are disclosed. In one aspect, an additively manufactured tooling shell is provided, into which a composite material is inlaid and cured. A surface of the tooling shell is provided with indentations or another mechanism to enable adherence between the composite material and the tooling shell. The resulting integrated structure is used as a component in a transport structure.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: February 21, 2023
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Richard Winston Hoyle, Broc William TenHouten, Narender Shankar Lakshman
  • Publication number: 20220339707
    Abstract: Methods for removing support structures in additively manufactured parts are disclosed. A method in accordance with an aspect of the present disclosure comprises inserting a demolition object in a first state into a hollow portion of a 3-D printed part, breaking a support structure within the hollow portion by contact with the demolition object, changing the demolition object into a second state while the demolition object is within the hollow portion of the 3-D printed part, and removing the demolition object from the hollow portion of the 3-D printed part.
    Type: Application
    Filed: April 25, 2022
    Publication date: October 27, 2022
    Inventors: Michael Thomas Kenworthy, Taylor Caitlin Doty, Bahram Issari, Narender Shankar Lakshman, Krzysztof Artysiewicz
  • Patent number: 11479015
    Abstract: Techniques for providing custom formed panels for transport structures including vehicles and aircraft are disclosed. In one aspect of the disclosure, a panel for a transport structure includes a first face sheet, a second face sheet arranged opposite the first face sheet, the second face sheet comprising a different geometrical profile than the first face sheet to define a space between the first and second face sheets having a variable thickness, a core configured to occupy the space. In another aspect, a node can be additively manufactured to form the custom panels by engaging opposing face sheets. The node has an inlet port for providing a foam-like substance into the space between the face sheets to thereafter solidify into a core.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: October 25, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Broc William TenHouten, Narender Shankar Lakshman
  • Patent number: 11420262
    Abstract: Systems and methods for co-casting of additively manufactured, high precision Interface Nodes are disclosed. The Interface Node includes an integrated structure including one or more complex or sophisticated features and functions. Co-casting of Interface Nodes by casting a part onto the Interface Node results in a hybrid structure comprising the cast part and the additively manufactured Interface Node. The interface node may include at least one of a node-to-tube connection, node-to-panel connection, or a node-to-extrusion connection. In an embodiment, engineered surfaces may be provided on the Interface Node to improve the blend between the Interface Node and the cast part during the co-casting process.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: August 23, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Narender Shankar Lakshman, Broc William TenHouten, Kevin Robert Czinger, Antonio Bernerd Martinez, Jon Paul Gunner, Muhammad Faizan Zafar
  • Patent number: 11408216
    Abstract: Systems and methods of co-printing a unitary hinge are provided. The unitary hinge may be co-printed using an additive manufacturing process. The unitary hinge includes a hinge pin that is substantially cylindrical in shape. The unitary hinge also includes a knuckle which surrounds a portion of the hinge pin and is configured to be manipulated about the hinge pin. The hinge pin is fabricated in situ with the knuckle such that further assembly is unnecessary. The unitary hinge may also include retention mechanism to retain the hinge within the knuckle without substantially restricting the knuckle from being rotated about the hinge pin. The unitary hinge may further be configured with a fluid port which may, for example, be used to provide a lubricant to an area between the hinge pin and the knuckle or to vacuum powder material or debris from the area.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 9, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Jon Paul Gunner, Narender Shankar Lakshman
  • Publication number: 20220206488
    Abstract: An autonomous delivery vehicle (ADV) may include multiple storage compartments, and each storage compartment of the plurality of storage compartments has a respective storage space and is associated with a respective delivery location. The respective storage space of each storage compartment may store one or more items. Each storage compartment may transition from a first state to a second state, and the first state may prevent access to the storage space of the respective storage compartment and the second state may enable access to the respective storage space of the respective storage compartment. The ADV may further include a receiver configured to receive first information from a computing system remote and external to the first ADV, and the first ADV may autonomously travel to one or more locations based on the first information.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 30, 2022
    Inventors: Kevin Robert CZINGER, Greg WEAVER, Narender Shankar LAKSHMAN
  • Publication number: 20220193776
    Abstract: Aspects are provided for additively manufacturing a component based on direct energy deposition (DED). An apparatus may include a DED system configured to additively manufacture a part. The apparatus may further include a forging tool configured to forge a region of the part during the additive manufacturing. In various embodiments, a solid body is used opposite to the forging tool during the forgery. For example, the solid body may include a mandrel against which the region of the part is forged.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 23, 2022
    Inventors: Narender Shankar Lakshman, Michael Thomas Kenworthy
  • Publication number: 20220193777
    Abstract: Methods and apparatuses for disassembling components are described. An apparatus in accordance with an aspect of the present disclosure comprises a first component including a first adhesive interface, a second component including a second adhesive interface, a joint between the first and second adhesive interfaces, the joint comprising an adhesive bonding to the first adhesive interface and to the second adhesive interface, such that the first component and the second component are joined together, and at least one thermal element in the adhesive, wherein the at least one thermal element is configured to weaken the joint by heating the adhesive when an energy is applied to the thermal element.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 23, 2022
    Inventor: Narender Shankar Lakshman
  • Publication number: 20220176450
    Abstract: Techniques for optimizing powder hole removal are disclosed. In one aspect, an apparatus for inserting powder removal features may identify what powder removal features are optimal for a given AM component, as well as the optimal location and physical characteristics of these features. The features are automatedly added to the component, and an FEA test is run. In the event of failure, the offending feature is removed and the process is repeated. If successful then the loose powder may be removed in a post-processing step following AM.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 9, 2022
    Inventors: Narender Shankar Lakshman, Thomas Samuel BOWDEN, JR., John Russell BUCKNELL, Ross Harrison BYERS, Broc William TenHOUTEN, Antonio Bernerd MARTINEZ, Muhammad Faizan ZAFAR, Richard Winston HOYLE, Chukwubuikem Marcel OKOLI
  • Publication number: 20220176449
    Abstract: Ultrasonic additive manufacturing (UAM) of surface members for a box-like part such as a crash structure or load-bearing structure in a vehicle is disclosed. In one aspect of the disclosure, a method for building a box-like part includes 3-D printing separately, using UAM, the one or more flat surface members in a horizontal plane relative to a print substrate. The method further includes assembling together the surface members at or proximate respective edges thereof to form the box-like part. In some embodiments, protrusions and other features are added to the surface members. In embodiments involving crash structures, trenches are machined into the inner surfaces to enable tailored deformation of the crash structure during an impact event.
    Type: Application
    Filed: November 5, 2021
    Publication date: June 9, 2022
    Inventors: Narender Shankar LAKSHMAN, Michael Thomas KENWORTHY, Taylor Caitlin DOTY
  • Patent number: 11292058
    Abstract: Techniques for optimizing powder hole removal are disclosed. In one aspect, an apparatus for inserting powder removal features may identify what powder removal features are optimal for a given AM component, as well as the optimal location and physical characteristics of these features. The features are automatedly added to the component, and an FEA test is run. In the event of failure, the offending feature is removed and the process is repeated. If successful then the loose powder may be removed in a post-processing step following AM.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 5, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Narender Shankar Lakshman, Thomas Samuel Bowden, Jr., John Russell Bucknell, Ross Harrison Byers, Broc William TenHouten, Antonio Bernerd Martinez, Muhammad Faizan Zafar, Richard Winston Hoyle, Chukwubuikem Marcel Okoli
  • Patent number: 11247367
    Abstract: Techniques for producing panels such as for use in a vehicle, boat, aircraft or other transport structure or mechanical structure using a 3-D-printed tooling shell are disclosed. A 3-D printer may be used to produce a tooling shell containing Invar and/or some other material for use in molding the panels. A channel may be formed in a 3-D printed tooling shell for enabling resin infusion, vacuum generation or heat transfer. Alternatively, or in addition to, one or more hollow sections may be formed within the 3-D printed tooling shell for reducing a weight of the shell. The panel may be molded using the 3-D printed tooling shell.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: February 15, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Jon Paul Gunner, Narender Shankar Lakshman
  • Publication number: 20210339802
    Abstract: Apparatus and methods for additively manufactured structures with augmented energy absorption properties are presented herein. Three dimensional (3D) additive manufacturing structures may be constructed with spatially dependent features to create crash components. When used in the construction of a transport vehicle, the crash components with spatially dependent additively manufactured features may enhance and augment crash energy absorption. This in turn absorbs and re-distributes more crash energy away from the vehicle's occupant(s), thereby improving the occupants' safety.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 4, 2021
    Inventors: Yong-Bae Cho, Antonio Bernerd Martinez, Jon Paul Gunner, Alexander Pai-chung Teng, Broc William TenHouten, Narender Shankar Lakshman, Richard Winston Hoyle
  • Patent number: 11155005
    Abstract: Techniques for 3-D printing a tooling shell for use in producing panels for a transport structure, such as an automobile, boat, aircraft, or other vehicle, or other mechanical structure, are disclosed. A 3-D printer may be used to produce a tooling shell containing Invar and/or some other material for use in molding the panels. A channel may be formed in a 3-D printed tooling shell for enabling resin infusion, vacuum generation or heat transfer. Alternatively, or in addition to, one or more hollow sections may be formed within the 3-D printed tooling shell for reducing a weight of the shell.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: October 26, 2021
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Jon Paul Gunner, Narender Shankar Lakshman
  • Patent number: 11110514
    Abstract: Apparatus and methods for joining nodes to tubes with node to tube joints are presented herein. Joining techniques allow the connection of additively manufactured nodes to tubes. In an embodiment, at least one node may be joined to a tube and may be a part of a vehicle chassis. The node to tube joint connection incorporates adhesive bonding between the node to tube to realize the connection. Sealants may be used to provide sealed regions for adhesive injection, which are housed in sealing interfaces co-printed with the additively manufactured nodes. Additionally, seals may act as isolators and reduce galvanic corrosion.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: September 7, 2021
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: William David Kreig, David Brian TenHouten, Chukwubuikem Marcel Okoli, Kevin Robert Czinger, Broc William TenHouten, Antonio Bernerd Martinez, Narender Shankar Lakshman
  • Publication number: 20210252825
    Abstract: Techniques for providing custom formed panels for transport structures including vehicles and aircraft are disclosed. In one aspect of the disclosure, a panel for a transport structure includes a first face sheet, a second face sheet arranged opposite the first face sheet, the second face sheet comprising a different geometrical profile than the first face sheet to define a space between the first and second face sheets having a variable thickness, a core configured to occupy the space. In another aspect, a node can be additively manufactured to form the custom panels by engaging opposing face sheets. The node has an inlet port for providing a foam-like substance into the space between the face sheets to thereafter solidify into a core.
    Type: Application
    Filed: February 14, 2020
    Publication date: August 19, 2021
    Inventors: Broc William TenHouten, Narender Shankar Lakshman