Patents by Inventor Naresh Mandava

Naresh Mandava has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220346943
    Abstract: A modular IOL system including intraocular primary and secondary components, which, when combined, form an intraocular optical correction device, wherein the secondary component is placed on the primary component within the perimeter of the capsulorhexis, thus avoiding the need to touch or otherwise manipulate the capsular bag. The secondary component may be manipulated, removed, and/or exchanged for a different secondary component for correction or modification of the optical result, on an intra-operative or post-operative basis, without the need to remove the primary component and without the need to manipulate the capsular bag. The primary component may have haptics extending therefrom for centration in the capsular bag, and the secondary component may exclude haptics, relying instead on attachment to the primary component for stability. Such attachment may include actuatable interlocking members.
    Type: Application
    Filed: July 1, 2022
    Publication date: November 3, 2022
    Applicants: Alcon Inc., The Regents of the University of Colorado, a body corporate
    Inventors: Malik Y. KAHOOK, Naresh MANDAVA, Glenn SUSSMAN, Paul MCLEAN, Robert E. ATKINSON
  • Patent number: 11406490
    Abstract: A modular IOL system including intraocular primary and secondary components, which, when combined, form an intraocular optical correction device, wherein the secondary component is placed on the primary component within the perimeter of the capsulorhexis, thus avoiding the need to touch or otherwise manipulate the capsular bag. The secondary component may be manipulated, removed, and/or exchanged for a different secondary component for correction or modification of the optical result, on an intra-operative or post-operative basis, without the need to remove the primary component and without the need to manipulate the capsular bag. The primary component may have haptics extending therefrom for centration in the capsular bag, and the secondary component may exclude haptics, relying instead on attachment to the primary component for stability. Such attachment may include actuatable interlocking members.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: August 9, 2022
    Assignees: Alcon Inc., The Regents of the University of Colorado, a body corporate
    Inventors: Malik Y. Kahook, Naresh Mandava, Glenn Sussman, Paul McLean, Robert E. Atkinson
  • Publication number: 20220176141
    Abstract: Systems and methods for wireless neural stimulation are presented. A microstimulator comprising a highly magnetic permeable material is implanted in the tissue of a living body. A wearable external controller creates a time-varying magnetic field that extends to the microstimulator in the tissue. The microstimulator re-shapes and boosts the time-varying magnetic field in the area surrounding the microstimulator, causing neural stimulation in the area around the microstimulator. A physician programmer device is also presented that allows a physician to program the wearable external controller.
    Type: Application
    Filed: April 1, 2020
    Publication date: June 9, 2022
    Inventors: Anthony V. Caparso, Richard J. Davis, Malik Kahook, Naresh Mandava
  • Patent number: 11291847
    Abstract: Described are systems and methods for preventing, diagnosing, and/or treating one or more medical conditions. The medical conditions can be ocular and/or neurological diseases, disorders, and/or conditions. The systems and methods can employ a microstimulator that is configured to be placed within an anatomical structure of a subject. The microstimulator can be capacitively linked to an external electronic device to provide neuromodulation to a biological target site proximal to the anatomical structure. The microstimulator can include a body and an electrically conductive insert arranged within the body to create a capacitively coupled link with the external electronic device. The electrically conductive insert can receive a power signal from an external electronic device and convert the power signal to deliver a therapy signal to the biological target site.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 5, 2022
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Anthony V. Caparso, Malik Kahook, Naresh Mandava, Noah Lemire, Adam Farwick, Steve Wilder, Steve Risser
  • Publication number: 20200188670
    Abstract: Described are systems and methods for preventing, diagnosing, and/or treating one or more medical conditions. The medical conditions can be ocular and/or neurological diseases, disorders, and/or conditions. The systems and methods can employ a microstimulator that is configured to be placed within an anatomical structure of a subject. The microstimulator can be capacitively linked to an external electronic device to provide neuromodulation to a biological target site proximal to the anatomical structure. The microstimulator can include a body and an electrically conductive insert arranged within the body to create a capacitively coupled link with the external electronic device. The electrically conductive insert can receive a power signal from an external electronic device and convert the power signal to deliver a therapy signal to the biological target site.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 18, 2020
    Inventors: Anthony V. Caparso, Malik Kahook, Naresh Mandava, Noah Lemire, Adam Farwick, Steve Wilder, Steve Risser
  • Patent number: 10307150
    Abstract: The present disclosure relates to a structure used in an ophthalmic surgical procedure. The device may be used in pupil expansion or stabilization of the iris. The device is made out of an elastic or semielastic material in a shape that is conducive to easy insertion and removal as well as being optimized for atraumatic pupil expansion.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: June 4, 2019
    Assignee: The Regents of the University of Colorado, A Body Corporate
    Inventors: Malik Y. Kahook, Naresh Mandava
  • Patent number: 10286105
    Abstract: A shape memory polymer (SMP) intraocular lens may have a refractive index above 1.45, a Tg between 10° C. and 60° C., inclusive, de minimiz or an absence of glistening, and substantially 100% transmissivity of light in the visible spectrum. The intraocular lens is then rolled at a temperature above Tg of the SMP material. The intraocular device is radially compressed within a die to a diameter of less than or equal to 1.8 mm while maintaining the temperature above Tg. The compressed intraocular lens device may be inserted through an incision less than 2 mm wide in a cornea or sclera or other anatomical structure. The lens can be inserted into the capsular bag, the ciliary sulcus, or other cavity through the incision. The SMP can substantially achieve refractive index values of greater than or equal to 1.45.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: May 14, 2019
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Malik Y. Kahook, Naresh Mandava, Robin Shandas, Bryan Rech
  • Patent number: 10286107
    Abstract: A shape memory polymer (SMP) intraocular lens may have a refractive index above 1.45, a Tg between 10° C. and 60° C., inclusive, de minimis or an absence of glistening, and substantially 100% transmissivity of light in the visible spectrum. The intraocular lens is then rolled at a temperature above Tg of the SMP material. The intraocular device is radially compressed within a die to a diameter of less than or equal to 1.8 mm while maintaining the temperature above Tg. The compressed intraocular lens device may be inserted through an incision less than 2 mm wide in a cornea or sclera or other anatomical structure. The lens can be inserted into the capsular bag, the ciliary sulcus, or other cavity through the incision. The SMP can substantially achieve refractive index values of greater than or equal to 1.45.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: May 14, 2019
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Malik Y. Kahook, Naresh Mandava, Robin Shandas, Bryan Rech, Michael D. Lowery, Daniel Urbaniak
  • Patent number: 10286106
    Abstract: A shape memory polymer (SMP) intraocular lens may have a refractive index above 1.45, a Tg between 10° C. and 60° C., inclusive, de minimis or an absence of glistening, and substantially 100% transmissivity of light in the visible spectrum. The intraocular lens is then rolled at a temperature above Tg of the SMP material. The intraocular device is radially compressed within a die to a diameter of less than or equal to 1.8 mm while maintaining the temperature above Tg. The compressed intraocular lens device may be inserted through an incision less than 2 mm wide in a cornea or sclera or other anatomical structure. The lens can be inserted into the capsular bag, the ciliary sulcus, or other cavity through the incision. The SMP can substantially achieve refractive index values of greater than or equal to 1.45.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: May 14, 2019
    Assignee: The Regents of the University of Colorado
    Inventors: Malik Y. Kahook, Naresh Mandava, Robin Shandas, Bryan Rech
  • Patent number: 10272176
    Abstract: A shape memory polymer (SMP) intraocular lens may have a refractive index above 1.45, a Tg between 10° C. and 60° C., inclusive, de minimis or an absence of glistening, and substantially 100% transmissivity of light in the visible spectrum. The intraocular lens is then rolled at a temperature above Tg of the SMP material. The intraocular device is radially compressed within a die to a diameter of less than or equal to 1.8 mm while maintaining the temperature above Tg. The compressed intraocular lens device may be inserted through an incision less than 2 mm wide in a cornea or sclera or other anatomical structure. The lens can be inserted into the capsular bag, the ciliary sulcus, or other cavity through the incision. The SMP can substantially achieve refractive index values of greater than or equal to 1.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: April 30, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO
    Inventors: Malik Y. Kahook, Naresh Mandava, Robin Shandas, Bryan Rech
  • Publication number: 20180296726
    Abstract: A shape memory polymer (SMP) intraocular lens may have a refractive index above 1.45, a Tg between 10° C. and 60° C., inclusive, de minimis or an absence of glistening, and substantially 100% transmissivity of light in the visible spectrum. The intraocular lens is then rolled at a temperature above Tg of the SMP material. The intraocular device is radially compressed within a die to a diameter of less than or equal to 1.8 mm while maintaining the temperature above Tg. The compressed intraocular lens device may be inserted through an incision less than 2 mm wide in a cornea or sclera or other anatomical structure. The lens can be inserted into the capsular bag, the ciliary sulcus, or other cavity through the incision. The SMP can substantially achieve refractive index values of greater than or equal to 1.
    Type: Application
    Filed: June 19, 2018
    Publication date: October 18, 2018
    Inventors: Malik Y. Kahook, Naresh Mandava, Robin Shandas, Bryan Rech, Michael D. Lowery, Daniel Urbaniak
  • Publication number: 20180154151
    Abstract: Described are systems and methods for preventing, diagnosing, and/or treating one or more medical conditions. The medical conditions can be ocular and/or neurological diseases, disorders, and/or conditions. The systems and methods can employ a microstimulator that is configured to be placed within an anatomical structure of a subject. The microstimulator can be capacitively linked to an external electronic device to provide neuromodulation to a biological target site proximal to the anatomical structure. The microstimulator can include a body and an electrically conductive insert arranged within the body to create a capacitively coupled link with the external electronic device. The electrically conductive insert can receive a power signal from an external electronic device and convert the power signal to deliver a therapy signal to the biological target site.
    Type: Application
    Filed: January 19, 2018
    Publication date: June 7, 2018
    Inventors: Anthony V. Caparso, Malik Kahook, Naresh Mandava, Noah Lemire, Adam Farwick, Steve Wilder, Steve Risser
  • Publication number: 20180140841
    Abstract: Described are systems and methods for preventing, diagnosing, and/or treating one or more medical conditions. The medical conditions can be ocular and/or neurological diseases, disorders, and/or conditions. The systems and methods can employ a microstimulator that is configured to be placed within an anatomical structure of a subject. The microstimulator can be capacitively linked to an external electronic device to provide neuromodulation to a biological target site proximal to the anatomical structure. The microstimulator can include a body and an electrically conductive insert arranged within the body to create a capacitively coupled link with the external electronic device. The electrically conductive insert can receive a power signal from an external electronic device and convert the power signal to deliver a therapy signal to the biological target site.
    Type: Application
    Filed: January 19, 2018
    Publication date: May 24, 2018
    Inventors: Anthony V. Caparso, Malik Kahook, Naresh Mandava, Noah Lemire, Adam Farwick, Steve Wilder, Steve Risser
  • Publication number: 20180133478
    Abstract: Described are systems and methods for preventing, diagnosing, and/or treating one or more medical conditions. The medical conditions can be ocular and/or neurological diseases, disorders, and/or conditions. The systems and methods can employ a microstimulator that is configured to be placed within an anatomical structure of a subject. The microstimulator can be capacitively linked to an external electronic device to provide neuromodulation to a biological target site proximal to the anatomical structure. The microstimulator can include a body and an electrically conductive insert arranged within the body to create a capacitively coupled link with the external electronic device. The electrically conductive insert can receive a power signal from an external electronic device and convert the power signal to deliver a therapy signal to the biological target site.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 17, 2018
    Inventors: Anthony V. Caparso, Malik Kahook, Naresh Mandava, Noah Lemire, Adam Farwick, Steve Wilder, Steve Risser
  • Patent number: 9877825
    Abstract: A modular IOL system including intraocular primary and secondary components, which, when combined, form an intraocular optical correction device, wherein the secondary component is placed on the primary component within the perimeter of the capsulorhexis, thus avoiding the need to touch or otherwise manipulate the capsular bag. The secondary component may be manipulated, removed, and/or exchanged for a different secondary component for correction or modification of the optical result, on an intra-operative or post-operative basis, without the need to remove the primary component and without the need to manipulate the capsular bag. The primary component may have haptics extending therefrom for centration in the capsular bag, and the secondary component may exclude haptics, relying instead on attachment to the primary lens for stability. Such attachment may reside radially inside the perimeter of the capsulorhexis and radially outside the field of view to avoid interference with light transmission.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: January 30, 2018
    Assignees: ClarVista Medical, Inc., The Regents of the University of Colorado, a body corporate
    Inventors: Malik Y. Kahook, Naresh Mandava, Paul McLean, Robert E. Atkinson
  • Publication number: 20180014928
    Abstract: A modular IOL system including intraocular primary and secondary components, which, when combined, form an intraocular optical correction device, wherein the secondary component is placed on the primary component within the perimeter of the capsulorhexis, thus avoiding the need to touch or otherwise manipulate the capsular bag. The secondary component may be manipulated, removed, and/or exchanged for a different secondary component for correction or modification of the optical result, on an intra-operative or post-operative basis, without the need to remove the primary component and without the need to manipulate the capsular bag. The primary component may have haptics extending therefrom for centration in the capsular bag, and the secondary component may exclude haptics, relying instead on attachment to the primary component for stability. Such attachment may include actuatable interlocking members.
    Type: Application
    Filed: May 10, 2017
    Publication date: January 18, 2018
    Applicants: ClarVista Medical, Inc., The Regents of the University of Colorado, a body corporate
    Inventors: Malik Y. KAHOOK, Naresh MANDAVA, Glenn SUSSMAN, Paul McLEAN, Robert E. ATKINSON
  • Publication number: 20170265851
    Abstract: The present disclosure relates to a structure used in an ophthalmic surgical procedure. The device may be used in pupil expansion or stabilization of the iris. The device is made out of an elastic or semielastic material in a shape that is conducive to easy insertion and removal as well as being optimized for atraumatic pupil expansion.
    Type: Application
    Filed: June 11, 2015
    Publication date: September 21, 2017
    Inventors: Malik Y. Kahook, Naresh Mandava
  • Patent number: 9681946
    Abstract: A modular IOL system including intraocular primary and secondary components, which, when combined, form an intraocular optical correction device, wherein the secondary component is placed on the primary component within the perimeter of the capsulorhexis, thus avoiding the need to touch or otherwise manipulate the capsular bag. The secondary component may be manipulated, removed, and/or exchanged for a different secondary component for correction or modification of the optical result, on an intra-operative or post-operative basis, without the need to remove the primary component and without the need to manipulate the capsular bag. The primary component may have haptics extending therefrom for centration in the capsular bag, and the secondary component may exclude haptics, relying instead on attachment to the primary component for stability. Such attachment may include actuatable interlocking members.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: June 20, 2017
    Assignees: ClarVista Medical, Inc., The Regents of the University of Colorado, a body corporate
    Inventors: Malik Y. Kahook, Naresh Mandava, Glenn Sussman, Paul McLean, Robert E. Atkinson
  • Publication number: 20160278912
    Abstract: A modular IOL system including intraocular primary and secondary components, which, when combined, form an intraocular optical correction device, wherein the secondary component is placed on the primary component within the perimeter of the capsulorhexis, thus avoiding the need to touch or otherwise manipulate the capsular bag. The secondary component may be manipulated, removed, and/or exchanged for a different secondary component for correction or modification of the optical result, on an intra-operative or post-operative basis, without the need to remove the primary component and without the need to manipulate the capsular bag. The primary component may have haptics extending therefrom for centration in the capsular bag, and the secondary component may exclude haptics, relying instead on attachment to the primary lens for stability. Such attachment may reside radially inside the perimeter of the capsulorhexis and radially outside the field of view to avoid interference with light transmission.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Applicants: The Regents of the University of Colorado, a body corporate, ClarVista Medical, Inc.
    Inventors: Malik Y. KAHOOK, Naresh MANDAVA, Paul MCLEAN, Robert E. ATKINSON
  • Publication number: 20160256264
    Abstract: A shape memory polymer (SMP) intraocular lens may have a refractive index above 1.45, a Tg between 10° C. and 60° C., inclusive, de minimis or an absence of glistening, and substantially 100% transmissivity of light in the visible spectrum. The intraocular lens is then rolled at a temperature above Tg of the SMP material. The intraocular device is radially compressed within a die to a diameter of less than or equal to 1.8 mm while maintaining the temperature above Tg. The compressed intraocular lens device may be inserted through an incision less than 2 mm wide in a cornea or sclera or other anatomical structure. The lens can be inserted into the capsular bag, the ciliary sulcus, or other cavity through the incision. The SMP can substantially achieve refractive index values of greater than or equal to 1.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 8, 2016
    Inventors: Malik Y. Kahook, Naresh Mandava, Robin Shandas, Bryan Rech