Patents by Inventor Nargol Rezvani

Nargol Rezvani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12267305
    Abstract: Systems and techniques for privacy preserving document analysis are described that derive insights pertaining to a digital document without communication of the content of the digital document. To do so, the privacy preserving document analysis techniques described herein capture visual or contextual features of the digital document and creates a stamp representation that represents these features without included the content of the digital document. The stamp representation is projected into a stamp embedding space based on a stamp encoding model generated through machine learning techniques capturing feature patterns and interaction in the stamp representations. The stamp encoding model exploits these feature interactions to define similarity of source documents based on location within the stamp embedding space. Accordingly, the techniques described herein can determine a similarity of documents without having access to the documents themselves.
    Type: Grant
    Filed: May 15, 2023
    Date of Patent: April 1, 2025
    Assignee: Adobe Inc.
    Inventors: Nikolaos Barmpalios, Ruchi Rajiv Deshpande, Randy Lee Swineford, Nargol Rezvani, Andrew Marc Greene, Shawn Alan Gaither, Michael Kraley
  • Publication number: 20230336532
    Abstract: Systems and techniques for privacy preserving document analysis are described that derive insights pertaining to a digital document without communication of the content of the digital document. To do so, the privacy preserving document analysis techniques described herein capture visual or contextual features of the digital document and creates a stamp representation that represents these features without included the content of the digital document. The stamp representation is projected into a stamp embedding space based on a stamp encoding model generated through machine learning techniques capturing feature patterns and interaction in the stamp representations. The stamp encoding model exploits these feature interactions to define similarity of source documents based on location within the stamp embedding space. Accordingly, the techniques described herein can determine a similarity of documents without having access to the documents themselves.
    Type: Application
    Filed: May 15, 2023
    Publication date: October 19, 2023
    Applicant: Adobe Inc.
    Inventors: Nikolaos Barmpalios, Ruchi Rajiv Deshpande, Randy Lee Swineford, Nargol Rezvani, Andrew Marc Greene, Shawn Alan Gaither, Michael Kraley
  • Patent number: 11689507
    Abstract: Systems and techniques for privacy preserving document analysis are described that derive insights pertaining to a digital document without communication of the content of the digital document. To do so, the privacy preserving document analysis techniques described herein capture visual or contextual features of the digital document and creates a stamp representation that represents these features without included the content of the digital document. The stamp representation is projected into a stamp embedding space based on a stamp encoding model generated through machine learning techniques capturing feature patterns and interaction in the stamp representations. The stamp encoding model exploits these feature interactions to define similarity of source documents based on location within the stamp embedding space. Accordingly, the techniques described herein can determine a similarity of documents without having access to the documents themselves.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: June 27, 2023
    Assignee: Adobe Inc.
    Inventors: Nikolaos Barmpalios, Ruchi Rajiv Deshpande, Randy Lee Swineford, Nargol Rezvani, Andrew Marc Greene, Shawn Alan Gaither, Michael Kraley
  • Publication number: 20210160221
    Abstract: Systems and techniques for privacy preserving document analysis are described that derive insights pertaining to a digital document without communication of the content of the digital document. To do so, the privacy preserving document analysis techniques described herein capture visual or contextual features of the digital document and creates a stamp representation that represents these features without included the content of the digital document. The stamp representation is projected into a stamp embedding space based on a stamp encoding model generated through machine learning techniques capturing feature patterns and interaction in the stamp representations. The stamp encoding model exploits these feature interactions to define similarity of source documents based on location within the stamp embedding space. Accordingly, the techniques described herein can determine a similarity of documents without having access to the documents themselves.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 27, 2021
    Applicant: Adobe Inc.
    Inventors: Nikolaos Barmpalios, Ruchi Rajiv Deshpande, Randy Lee Swineford, Nargol Rezvani, Andrew Marc Greene, Shawn Alan Gaither, Michael Kraley