Patents by Inventor Nariaki Kuriyama

Nariaki Kuriyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10504688
    Abstract: An analytical cell includes a first substrate and a second substrate each having a through hole extending in a thickness direction thereof. The first substrate and the second substrate are partially overlapped with each other to form an overlapping portion. In the overlapping portion, a solid state joint is formed by solid state bonding of a first solid portion protruding from the first substrate and a second solid portion protruding from the second substrate, whereby the first substrate and the second substrate are spaced from each other by a predetermined distance, and joined together in a state where the first substrate and the second substrate are positioned to form an observation window. At the observation window, the through holes of the first substrate and the second substrate face each other, and an electron beam is transmitted through the observation window.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: December 10, 2019
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takanori Maebashi, Nariaki Kuriyama, Yoshiya Fujiwara
  • Patent number: 9966222
    Abstract: A sample holder includes an adapter attached to an adapter attaching part. An analysis target, e.g., analytical cell, has first electrical connection members. The adapter has second electrical connection members. The number of the first electrical connection members and the number of the second electrical connection members are the same. Further, the adapter has third electrical connection members, and the adapter attaching part has fourth electrical connection members. The number of the third electrical connection members and the number of the fourth electrical connection members are the same. For example, the third electrical connection members are six electrically conductive membranes, i.e., a first electrically conductive membrane to a sixth electrically conductive membrane. Among the six electrically conductive membranes, only the third electrically conductive membrane is not electrically connected to any of the second electrical connection members and the first electrical connection members.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: May 8, 2018
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takanori Maebashi, Nariaki Kuriyama, Yoshiya Fujiwara
  • Patent number: 9851329
    Abstract: Substrates forming an overlapping portion of an analytical cell have through holes each having a shape tapered from an outer surface of the substrate facing to outside of the overlapping portion toward an inner surface thereof facing to inside thereof. An observation window is formed between the through holes facing each other. In the overlapping portion, at least one of negative and positive electrode active materials is provided between transmission membranes of the observation window, and at least one pillar is provided between first and second positions. At the first position, edge portions of the through holes of the outer surfaces are face-to-face with each other. At the second position, edge portions of the through holes of the inner surfaces are face-to-face with each other. At least one spacer is further provided at a position shifted from the first position toward a circumferential edge of the overlapping portion.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: December 26, 2017
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takanori Maebashi, Yoshiya Fujiwara, Mitsumoto Kawai, Nariaki Kuriyama
  • Patent number: 9689838
    Abstract: An analytical cell includes a first substrate with a first through hole formed therein, and a second substrate with first and second through holes formed therein. First and second solid portions protruding respectively from the first and second substrates are solid-state bonded together to form a solid state joint. By the solid state joint, the first and second substrates are joined together such that transmission membranes of the first and second substrates are mutually spaced by a predetermined distance, to form an overlapping portion. In the overlapping portion, an observation window is formed at a position where the first through holes face each other, and an accommodating part is formed between a lid member and the first substrate through the second through hole. One of negative and positive electrode active materials is provided in the accommodating part, and the other is provided between the transmission membranes of the observation window.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: June 27, 2017
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takanori Maebashi, Yoshiya Fujiwara, Mitsumoto Kawai, Nariaki Kuriyama
  • Publication number: 20170059522
    Abstract: Substrates forming an overlapping portion of an analytical cell have through holes each having a shape tapered from an outer surface of the substrate facing to outside of the overlapping portion toward an inner surface thereof facing to inside thereof. An observation window is formed between the through holes facing each other. In the overlapping portion, at least one of negative and positive electrode active materials is provided between transmission membranes of the observation window, and at least one pillar is provided between first and second positions. At the first position, edge portions of the through holes of the outer surfaces are face-to-face with each other. At the second position, edge portions of the through holes of the inner surfaces are face-to-face with each other. At least one spacer is further provided at a position shifted from the first position toward a circumferential edge of the overlapping portion.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 2, 2017
    Inventors: Takanori MAEBASHI, Yoshiya FUJIWARA, Mitsumoto KAWAI, Nariaki KURIYAMA
  • Publication number: 20170059521
    Abstract: An analytical cell includes a first substrate with a first through hole formed therein, and a second substrate with first and second through holes formed therein. First and second solid portions protruding respectively from the first and second substrates are solid-state bonded together to form a solid state joint. By the solid state joint, the first and second substrates are joined together such that transmission membranes of the first and second substrates are mutually spaced by a predetermined distance, to form an overlapping portion. In the overlapping portion, an observation window is formed at a position where the first through holes face each other, and an accommodating part is formed between a lid member and the first substrate through the second through hole. One of negative and positive electrode active materials is provided in the accommodating part, and the other is provided between the transmission membranes of the observation window.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 2, 2017
    Inventors: Takanori MAEBASHI, Yoshiya FUJIWARA, Mitsumoto KAWAI, Nariaki KURIYAMA
  • Publication number: 20170062176
    Abstract: A sample holder includes an adapter attached to an adapter attaching part. An analysis target, e.g., analytical cell, has first electrical connection members. The adapter has second electrical connection members. The number of the first electrical connection members and the number of the second electrical connection members are the same. Further, the adapter has third electrical connection members, and the adapter attaching part has fourth electrical connection members. The number of the third electrical connection members and the number of the fourth electrical connection members are the same. For example, the third electrical connection members are six electrically conductive membranes, i.e., a first electrically conductive membrane to a sixth electrically conductive membrane. Among the six electrically conductive membranes, only the third electrically conductive membrane is not electrically connected to any of the second electrical connection members and the first electrical connection members.
    Type: Application
    Filed: August 22, 2016
    Publication date: March 2, 2017
    Inventors: Takanori MAEBASHI, Nariaki KURIYAMA, Yoshiya FUJIWARA
  • Publication number: 20170003243
    Abstract: An analytical cell includes a first substrate and a second substrate each having a through hole extending in a thickness direction thereof. The first substrate and the second substrate are partially overlapped with each other to form an overlapping portion. In the overlapping portion, a solid state joint is formed by solid state bonding of a first solid portion protruding from the first substrate and a second solid portion protruding from the second substrate, whereby the first substrate and the second substrate are spaced from each other by a predetermined distance, and joined together in a state where the first substrate and the second substrate are positioned to form an observation window. At the observation window, the through holes of the first substrate and the second substrate face each other, and an electron beam is transmitted through the observation window.
    Type: Application
    Filed: June 28, 2016
    Publication date: January 5, 2017
    Inventors: Takanori MAEBASHI, Nariaki KURIYAMA, Yoshiya FUJIWARA
  • Patent number: 9496118
    Abstract: An analytical cell includes first and second holders. The first and second holders each contain a substrate having a through-hole and a transmission membrane with an electron beam permeability so as to cover the through-hole. The first and second holders are stacked to form an overlapping portion such that the transmission membranes face each other. The through-holes face each other across the transmission membranes to form an observation window. Negative and positive electrode active materials are separated from each other and contact the electrolytic solution in the observation window. The negative and positive electrode active materials are electrically connected to negative and positive electrode collectors, respectively, in the overlapping portion. At least one of the negative and positive electrode collectors has an electrically insulating isolation membrane for avoiding contact with the electrolytic solution.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: November 15, 2016
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nariaki Kuriyama, Yoshiya Fujiwara
  • Patent number: 9455117
    Abstract: An analytical cell includes a first holder and a second holder. The first holder and the second holder each contain a substrate including a through-hole and a transmission membrane having an electron beam permeability. The through-hole is covered with the transmission membrane. The first holder and the second holder are stacked to form an overlapping portion such that the transmission membranes face toward each other. A negative electrode active material and a positive electrode active material, which are arranged at a distance from each other and are in contact, respectively, with an electrolytic solution, are connected electrically to a negative electrode collector and a positive electrode collector, respectively, in the overlapping portion. A lyophobic part having no affinity for the electrolytic solution is formed on at least one of the negative electrode collector and the positive electrode collector.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 27, 2016
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshiya Fujiwara, Nariaki Kuriyama, Takanori Maebashi, Mitsumoto Kawai
  • Publication number: 20160056013
    Abstract: An analytical cell includes a first holder and a second holder. The first holder and the second holder each contain a substrate including a through-hole and a transmission membrane having an electron beam permeability. The through-hole is covered with the transmission membrane. The first holder and the second holder are stacked to form an overlapping portion such that the transmission membranes face toward each other. A negative electrode active material and a positive electrode active material, which are arranged at a distance from each other and are in contact, respectively, with an electrolytic solution, are connected electrically to a negative electrode collector and a positive electrode collector, respectively, in the overlapping portion. A lyophobic part having no affinity for the electrolytic solution is formed on at least one of the negative electrode collector and the positive electrode collector.
    Type: Application
    Filed: August 18, 2015
    Publication date: February 25, 2016
    Inventors: Yoshiya FUJIWARA, Nariaki KURIYAMA, Takanori MAEBASHI, Mitsumoto KAWAI
  • Patent number: 9194839
    Abstract: An analytical cell includes first and second holders. The first and second holders each contain a substrate having a through-hole and a transmission membrane with an electron beam permeability so as to cover the through-hole. The first and second holders are stacked to form an overlapping portion such that the transmission membranes face each other and that an inner space therein containing the electrolytic solution is sealed. The through-holes face each other across the transmission membranes to form an observation window. Negative and positive electrode active materials are separated from each other and contact the electrolytic solution in the observation window. A transmission body containing an electron beam permeable solid is formed between at least one of the negative and positive electrode active materials and the transmission membrane.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: November 24, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nariaki Kuriyama, Yoshiya Fujiwara
  • Publication number: 20150293050
    Abstract: An analytical cell includes first and second holders. The first and second holders each contain a substrate having a through-hole and a transmission membrane with an electron beam permeability so as to cover the through-hole. The first and second holders are stacked to form an overlapping portion such that the transmission membranes face each other and that an inner space therein containing the electrolytic solution is sealed. The through-holes face each other across the transmission membranes to form an observation window. Negative and positive electrode active materials are separated from each other and contact the electrolytic solution in the observation window. A transmission body containing an electron beam permeable solid is formed between at least one of the negative and positive electrode active materials and the transmission membrane.
    Type: Application
    Filed: April 6, 2015
    Publication date: October 15, 2015
    Inventors: Nariaki KURIYAMA, Yoshiya FUJIWARA
  • Publication number: 20150294835
    Abstract: An analytical cell includes first and second holders. The first and second holders each contain a substrate having a through-hole and a transmission membrane with an electron beam permeability so as to cover the through-hole. The first and second holders are stacked to form an overlapping portion such that the transmission membranes face each other. The through-holes face each other across the transmission membranes to form an observation window. Negative and positive electrode active materials are separated from each other and contact the electrolytic solution in the observation window. The negative and positive electrode active materials are electrically connected to negative and positive electrode collectors, respectively, in the overlapping portion. At least one of the negative and positive electrode collectors has an electrically insulating isolation membrane for avoiding contact with the electrolytic solution.
    Type: Application
    Filed: April 6, 2015
    Publication date: October 15, 2015
    Inventors: Nariaki KURIYAMA, Yoshiya FUJIWARA
  • Patent number: 8033009
    Abstract: There is provided a method for producing a force sensor including: a force sensor chip; and an attenuator, in which the force sensor chip and the attenuator are joined at joint portions with a glass layer sandwiched therebetween. The method includes: a film forming step in which a glass film as the glass layer is formed on regions of the attenuator containing the joint portions or on regions of the force sensor chip containing the joint portions; and an anodic bonding step in which the force sensor chip and the attenuator are stacked as a stacked body in close contact with each other at the joint portions, and the glass film and the force sensor chip, or the glass film and the attenuator, are joined.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: October 11, 2011
    Assignee: Honda Motor Co., Ltd
    Inventors: Nariaki Kuriyama, Jun Sasahara, Tadahiro Kubota, Daisuke Okamura, Takeshi Ohsato
  • Patent number: 7754368
    Abstract: A simple, inexpensive and highly efficient fuel cell has boundary structures made of a photo-sensitive material in combination with selective patterning. Printed circuit board (PCB) fabrication techniques combine boundary structures with two and three dimensional electrical flow path. Photo-sensitive material and PCB fabrication techniques are alternately or combined utilized for making micro-channel structures or micro stitch structures for substantially reducing dead zones of the diffusion layer while keeping fluid flow resistance to a minimum. The fuel cell assembly is free of mechanical clamping elements. Adhesives that may be conductively contaminated and/or fiber-reinforced provide mechanical and eventual electrical connections, and sealing within the assembly. Mechanically supporting backing layers are pre-fabricated with a natural bend defined in combination with the backing layers' elasticity to eliminate massive support plates and assist the adhesive bonding.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: July 13, 2010
    Assignees: The Board of Trustees of the Leland Stanford Junior, Honda Motor Co., Ltd
    Inventors: Jun Sasahara, Daniel Braithwaite, Suk-Won Cha, Tibor Fabian, Tadahiro Kubota, Nariaki Kuriyama, Sang-Joon John Lee, Ryan O'Hayre, Friedrich B. Prinz, Yuji Saito, Toshifumi Suzuki
  • Patent number: 7727665
    Abstract: In a fuel cell assembly (100, 200), a diffusion layer (113, 114, 201) comprises an electroconductive film (133, 133a, 133b) formed integrally with a separator (115, 116, 115a) so as to form a unitary separator-diffusion layer assembly (130, 131, 130a, 203). The electroconductive film of the diffusion layer can be formed on the separator by a process comprising physical vapor deposition, chemical vapor deposition, spin coating, sputtering or screen printing.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: June 1, 2010
    Assignee: Honda Motor Co., Ltd
    Inventors: Jun Sasahara, Toshifumi Suzuki, Tadahiro Kubota, Nariaki Kuriyama, Yuji Saito
  • Patent number: 7700218
    Abstract: A simple, inexpensive and highly efficient fuel cell has boundary structures made of a photo-sensitive material in combination with selective patterning. Printed circuit board (PCB) fabrication techniques combine boundary structures with two and three dimensional electrical flow path. Photo-sensitive material and PCB fabrication techniques are alternately or combined utilized for making micro-channel structures or micro stitch structures for substantially reducing dead zones of the diffusion layer while keeping fluid flow resistance to a minimum. The fuel cell assembly is free of mechanical clamping elements. Adhesives that may be conductively contaminated and/or fiber-reinforced provide mechanical and eventual electrical connections, and sealing within the assembly. Mechanically supporting backing layers are pre-fabricated with a natural bend defined in combination with the backing layers' elasticity to eliminate massive support plates and assist the adhesive bonding.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: April 20, 2010
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd
    Inventors: Jun Sasahara, Daniel Braithwaite, Suk-Won Cha, Tibor Fabian, Tadahiro Kubota, Nariaki Kuriyama, Sang-Joon John Lee, Ryan O'Hayre, Friedrich B. Prinz, Yuji Saito, Toshifumi Suzuki
  • Patent number: 7670699
    Abstract: A simple, inexpensive and highly efficient fuel cell has boundary structures made of a photo-sensitive material in combination with selective patterning. Printed circuit board (PCB) fabrication techniques combine boundary structures with two and three dimensional electrical flow path. Photo-sensitive material and PCB fabrication techniques are alternately or combined utilized for making micro-channel structures or micro stitch structures for substantially reducing dead zones of the diffusion layer while keeping fluid flow resistance to a minimum. The fuel cell assembly is free of mechanical clamping elements. Adhesives that may be conductively contaminated and/or fiber-reinforced provide mechanical and eventual electrical connections, and sealing within the assembly. Mechanically supporting backing layers are pre-fabricated with a natural bend defined in combination with the backing layers' elasticity to eliminate massive support plates and assist the adhesive bonding.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: March 2, 2010
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd
    Inventors: Jun Sasahara, Daniel Braithwaite, Suk-Won Cha, Tibor Fabian, Tadahiro Kubota, Nariaki Kuriyama, Sang-Joon John Lee, Ryan O'Hayre, Friedrich B. Prinz, Yuji Saito, Toshifumi Suzuki
  • Patent number: 7569300
    Abstract: In a fuel cell assembly (1) comprising a pair of separators (11, 12) each for defining a recess (10) serving as a conduit for a fuel fluid or an oxidizer fluid, a feedthrough conductive path for connecting top and under surfaces of each separator is achieved by a second electroconductive film (36) formed on a side wall of a through-hole (33) extending through each separator (11, 12) in such a manner that the second electroconductive film (36) connects a first electroconductive film (35) constituting a top surface of a protrusion (30) provided in the recess (10) to a third electroconductive film (37) formed on a surface opposite to that formed with the recess (10).
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: August 4, 2009
    Assignee: Honda Motor Co., Ltd
    Inventors: Jun Sasahara, Toshifumi Suzuki, Tadahiro Kubota, Nariaki Kuriyama, Yuji Saito