Patents by Inventor Naritoshi Yoshimura
Naritoshi Yoshimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8865939Abstract: A method for producing trans-1,4-bis(aminomethyl)cyclohexane includes a nuclear hydrogenation step of producing a hydrogenated terephthalic acid or terephthalic acid derivative by nuclear hydrogenation of a terephthalic acid or terephthalic acid derivative, the terephthalic acid or terephthalic acid derivative being at least one selected from the group consisting of terephthalic acid, terephthalic acid ester, and terephthalic acid amide; a cyanation step of treating the hydrogenated terephthalic acid or terephthalic acid derivative with ammonia, thereby producing 1,4-dicyanocyclohexane, and producing trans-1,4-dicyanocyclohexane from the obtained 1,4-dicyanocyclohexane; and an aminomethylation step of treating the trans-1,4-dicyanocyclohexane with hydrogen, thereby producing trans-1,4-bis(aminomethyl)cyclohexane. Metal oxide is used as a catalyst in the cyanation step, and the obtained trans-1,4-dicyanocyclohexane has a metal content of 3000 ppm or less.Type: GrantFiled: October 5, 2011Date of Patent: October 21, 2014Assignee: Mitsui Chemicals, Inc.Inventors: Naritoshi Yoshimura, Shinji Kiyono, Tetsuya Hamada, Eiji Watanabe, Saiko Sawada
-
Patent number: 8865938Abstract: A method for producing bis(aminomethyl)cyclohexanes includes a nuclear hydrogenation step of producing hydrogenated phthalic acids or phthalic acid derivatives by nuclear hydrogenation of phthalic acids or phthalic acid derivatives of at least one selected from the group consisting of phthalic acids, phthalic acid esters, and phthalic acid amides; a cyanation step of treating the hydrogenated phthalic acids or phthalic acid derivatives obtained in the nuclear hydrogenation step with ammonia, thereby producing dicyanocyclohexanes; and an aminomethylation step of treating the dicyanocyclohexanes obtained in the cyanation step with hydrogen, thereby producing bis(aminomethyl)cyclohexanes. In the cyanation step, metal oxide is used as a catalyst, and the obtained dicyanocyclohexanes have a metal content of 3000 ppm or less.Type: GrantFiled: October 5, 2011Date of Patent: October 21, 2014Assignee: Mitsui Chemicals, Inc.Inventors: Naritoshi Yoshimura, Shinji Kiyono, Tetsuya Hamada, Eiji Watanabe, Saiko Sawada
-
Patent number: 8604253Abstract: The present invention is a method for producing a polyhydric phenol, including the following steps (a) to (d): (a) a first step of producing (4S,5R,6S)-4,5,6-trihydroxy-2-cyclohexcene-1-one from 2-deoxy-scyllo-inosose by a dehydration reaction; (b) a second step of producing 1,2,4-trihydroxybenzene from the (4S,5R,6S)-4,5,6-trihydroxy-2-cyclohexene-1-one obtained in the first step by a dehydration reaction; (c) a third step of producing 4-hydroxycyclohexane-1,3-dione from the 1,2,4-trihydroxybenzene by a catalytic hydrogenation reaction with the use of a metal catalyst; and (d) a fourth step of producing hydroquinone by heating the 4-hydroxycyclohexane-1,3-dione.Type: GrantFiled: April 27, 2010Date of Patent: December 10, 2013Assignee: Mitsui Chemicals, Inc.Inventors: Hideo Kitagawa, Junya Kiyosu, Susumu Saito, Takaomi Hayashi, Naritoshi Yoshimura, Aya Nakagawa
-
Publication number: 20130197269Abstract: A method for producing bis(aminomethyl)cyclohexanes includes a nuclear hydrogenation step of producing hydrogenated phthalic acids or phthalic acid derivatives by nuclear hydrogenation of phthalic acids or phthalic acid derivatives of at least one selected from the group consisting of phthalic acids, phthalic acid esters, and phthalic acid amides; a cyanation step of treating the hydrogenated phthalic acids or phthalic acid derivatives obtained in the nuclear hydrogenation step with ammonia, thereby producing dicyanocyclohexanes; and an aminomethylation step of treating the dicyanocyclohexanes obtained in the cyanation step with hydrogen, thereby producing bis(aminomethyl)cyclohexanes. In the cyanation step, metal oxide is used as a catalyst, and the obtained dicyanocyclohexanes have a metal content of 3000 ppm or less.Type: ApplicationFiled: October 5, 2011Publication date: August 1, 2013Inventors: Naritoshi Yoshimura, Shinji Kiyono, Tetsuya Hamada, Eiji Watanabe, Saiko Sawada
-
Publication number: 20130197270Abstract: A method for producing trans-1,4-bis(aminomethyl)cyclohexane includes a nuclear hydrogenation step of producing a hydrogenated terephthalic acid or terephthalic acid derivative by nuclear hydrogenation of a terephthalic acid or terephthalic acid derivative, the terephthalic acid or terephthalic acid derivative being at least one selected from the group consisting of terephthalic acid, terephthalic acid ester, and terephthalic acid amide; a cyanation step of treating the hydrogenated terephthalic acid or terephthalic acid derivative with ammonia, thereby producing 1,4-dicyanocyclohexane, and producing trans-1,4-dicyanocyclohexane from the obtained 1,4-dicyanocyclohexane; and an aminomethylation step of treating the trans-1,4-dicyanocyclohexane with hydrogen, thereby producing trans-1,4-bis(aminomethyl)cyclohexane. Metal oxide is used as a catalyst in the cyanation step, and the obtained trans-1,4-dicyanocyclohexane has a metal content of 3000 ppm or less.Type: ApplicationFiled: October 5, 2011Publication date: August 1, 2013Inventors: Naritoshi Yoshimura, Shinji Kiyono, Tetsuya Hamada, Eiji Watanabe, Saiko Sawada
-
Patent number: 8466238Abstract: The invention aims to provide latent curing agents which exert high low-temperature curing properties when used together with ionically polymerizable compounds and which exhibit high storage stability at room temperature. Latent curing agents for ionically polymerizable compounds which agents each contain a hydroxyl-free amine imide compound having an N—N bond energy of 100 to 210 kJ/mol as determined by B3LYP functional theory method.Type: GrantFiled: December 26, 2008Date of Patent: June 18, 2013Assignee: Mitsui Chemicals, Inc.Inventors: Hiroaki Tamatani, Mitsuaki Chida, Yugo Yamamoto, Yuichi Ito, Takashi Nakano, Naritoshi Yoshimura
-
Patent number: 8378152Abstract: Propylene glycol is produced by a method of producing propylene glycol, the method including: obtaining propylene glycol by performing catalytic hydrogenation of glycerol in the presence of a catalyst, the catalyst containing zinc oxide and at least one of copper and copper oxide, and the catalyst, after being reduced at 180° C. to 230° C. in the presence of hydrogen, showing a half width of from 0.4 to 1.1 of a peak having a peak top at a position at which a diffraction angle (2?±0.2°) is 43.1° in an X-ray diffraction pattern obtained using CuK? as a radiation source.Type: GrantFiled: April 21, 2009Date of Patent: February 19, 2013Assignee: Mitsui Chemicals, Inc.Inventors: Hiroshi Kouno, Shuji Ozawa, Naritoshi Yoshimura
-
Patent number: 8378146Abstract: Provided is a method for producing catechol in a one-pot by reacting (4S,5R,6S)-4,5,6-trihydroxy-2-cyclohexene-1-one under hydrogen-reducing conditions while heating.Type: GrantFiled: April 7, 2009Date of Patent: February 19, 2013Assignee: Mitsui Chemicals, Inc.Inventors: Tsuneji Suzuki, Takaomi Hayashi, Hideo Kitagawa, Naritoshi Yoshimura
-
Patent number: 8258361Abstract: The invention provides transition metal complex compounds, high-activity olefin oligomerization catalysts containing the compounds, and olefin oligomerization processes using the catalysts. A transition metal complex compound [A] according to the invention is represented by Formula (I) or Formula (I?) below. An olefin oligomerization catalyst includes the transition metal complex compound [A]. In an olefin oligomerization process of the invention, an olefin is oligomerized in the presence of the catalyst.Type: GrantFiled: June 27, 2008Date of Patent: September 4, 2012Assignee: Mitsui Chemicals, Inc.Inventors: Yasuhiko Suzuki, Shinsuke Kinoshita, Atsushi Shibahara, Naritoshi Yoshimura, Isao Hara, Tetsuya Hamada, Kazumori Kawamura, Kou Tsurugi, Yasunori Saito, Seiichi Ishii, Yasushi Nakayama, Naoto Matsukawa, Susumu Murata
-
Publication number: 20120046498Abstract: The present invention is a method for producing a polyhydric phenol, including the following steps (a) to (d): (a) a first step of producing (4S,5R,6S)-4,5,6-trihydroxy-2-cyclohexcene-1-one from 2-deoxy-scyllo-inosose by a dehydration reaction; (b) a second step of producing 1,2,4-trihydroxybenzene from the (4S,5R,6S)-4,5,6-trihydroxy-2-cyclohexene-1-one obtained in the first step by a dehydration reaction; (c) a third step of producing 4-hydroxycyclohexane-1,3-dione from the 1,2,4-trihydroxybenzene by a catalytic hydrogenation reaction with the use of a metal catalyst; and (d) a fourth step of producing hydroquinone by heating the 4-hydroxycyclohexane-1,3-dione.Type: ApplicationFiled: April 27, 2010Publication date: February 23, 2012Applicant: MITSUI CHEMICALS, INC.Inventors: Hideo Kitagawa, Junya Kiyosu, Susumu Saito, Takaomi Hayashi, Naritoshi Yoshimura, Aya Nakagawa
-
Publication number: 20110288240Abstract: A phosphazene-supported catalyst in which a support is bonded to a group represented by the general formula (1): wherein n, Zn?, a, b, c, d, R, R1 and D are all defined. The phosphazene-supported catalyst is highly effective to catalyze various organic reactions, and further has no reduction of activity even after recovery and reuse of the catalyst, thus it being economically advantageous. In addition, the polymerization of cyclic monomers, substitution of substituents, carbon-carbon bond forming reactions and the like can be conducted with extremely high efficiency.Type: ApplicationFiled: August 4, 2011Publication date: November 24, 2011Applicant: Mitsui Chemicals, Inc.Inventors: Naritoshi YOSHIMURA, Shinji Kiyono, Kazumi Mizutani, Isao Hara, Takaomi Hayashi, Tadahito Nobori, Yoshihiro Yamamoto, Miyuki Konno, Yoshihisa Inoue, Akira Matsuura, Tuneyuki Ohkubo
-
Patent number: 8053608Abstract: It is an object of the present invention to provide a process for producing propylene glycol from glycerol as a raw material without the necessity for a step of gasifying glycerol. The process for producing propylene glycol of the present invention comprises a step of subjecting glycerol to catalytic hydrogenation in the presence of a catalyst A containing zinc oxide, silica, and at least one of copper and copper oxide.Type: GrantFiled: October 28, 2008Date of Patent: November 8, 2011Assignee: Mitsui Chemicals, Inc.Inventors: Hiroshi Kouno, Shuji Ozawa, Naritoshi Yoshimura
-
Publication number: 20110082325Abstract: The invention provides transition metal complex compounds, high-activity olefin oligomerization catalysts containing the compounds, and olefin oligomerization processes using the catalysts. A transition metal complex compound [A] according to the invention is represented by Formula (I) or Formula (I?) below. An olefin oligomerization catalyst includes the transition metal complex compound [A]. In an olefin oligomerization process of the invention, an olefin is oligomerized in the presence of the catalyst.Type: ApplicationFiled: June 27, 2008Publication date: April 7, 2011Inventors: Yasuhiko Suzuki, Shinsuke Kinoshita, Atsushi Shibahara, Naritoshi Yoshimura, Isao Hara, Tetsuya Hamada, Kazumori Kawamura, Kou Tsurugi, Yasunori Saito, Seiichi Ishii, Yasushi Nakayama, Naoto Matsukawa, Susumu Murata
-
Publication number: 20110040131Abstract: Propylene glycol is produced by a method of producing propylene glycol, the method including: obtaining propylene glycol by performing catalytic hydrogenation of glycerol in the presence of a catalyst, the catalyst containing zinc oxide and at least one of copper and copper oxide, and the catalyst, after being reduced at 180° C. to 230° C. in the presence of hydrogen, showing a half width of from 0.4 to 1.1 of a peak having a peak top at a position at which a diffraction angle (2?±0.2°) is 43.1° in an X-ray diffraction pattern obtained using CuK? as a radiation source.Type: ApplicationFiled: April 21, 2009Publication date: February 17, 2011Applicant: MITSUI CHEMICALS, INC.Inventors: Hiroshi Kouno, Shuji Ozawa, Naritoshi Yoshimura
-
Publication number: 20110034735Abstract: Provided is a method for producing catechol in a one-pot by reacting (4S,5R,6S)-4,5,6-trihydroxy-2-cyclohexene-1-one under hydrogen-reducing conditions while heating.Type: ApplicationFiled: April 7, 2009Publication date: February 10, 2011Applicant: Mitsui Chemicals, Inc.Inventors: Tsuneji Suzuki, Takaomi Hayashi, Hideo Kitagawa, Naritoshi Yoshimura
-
Publication number: 20100256425Abstract: It is an object of the present invention to provide a process for producing propylene glycol from glycerol as a raw material without the necessity for a step of gasifying glycerol. The process for producing propylene glycol of the present invention comprises a step of subjecting glycerol to catalytic hydrogenation in the presence of a catalyst A containing zinc oxide, silica, and at least one of copper and copper oxide.Type: ApplicationFiled: October 28, 2008Publication date: October 7, 2010Applicant: MITSUI CHEMICALS, INC.Inventors: Hiroshi Kouno, Shuji Ozawa, Naritoshi Yoshimura
-
Publication number: 20100253213Abstract: The invention aims to provide latent curing agents which exert high low-temperature curing properties when used together with ionically polymerizable compounds and which exhibit high storage stability at room temperature. Latent curing agents for ionically polymerizable compounds which agents each contain a hydroxyl-free amine imide compound having an N—N bond energy of 100 to 210 kJ/mol as determined by B3LYP functional theory method.Type: ApplicationFiled: December 26, 2008Publication date: October 7, 2010Applicant: MITSUI CHEMICALS, INCInventors: Hiroaki Tamatani, Mitsuaki Chida, Yugo Yamamoto, Yuichi Ito, Takashi Nakano, Naritoshi Yoshimura
-
Publication number: 20080318767Abstract: A phosphazene-supported catalyst in which a support is bonded to a group represented by the general formula (1): wherein n, Zn?, a, b, c, d, R, R1 and D are all defined. The phosphazene-supported catalyst is highly effective to catalyze various organic reactions, and further has no reduction of activity even after recovery and reuse of the catalyst, thus it being economically advantageous. In addition, the polymerization of cyclic monomers, substitution of substituents, carbon-carbon bond forming reactions and the like can be conducted with extremely high efficiency.Type: ApplicationFiled: June 28, 2005Publication date: December 25, 2008Applicant: Mitsui Chemicals, Inc.Inventors: Naritoshi Yoshimura, Shinji Kiyono, Kazumi Mizutani, Isao Hara, Takaomi Hayashi, Tadahito Nobori, Yoshihiro Yamamoto, Miyuki Konno, Yoshihisa Inoue, Akira Matsuura, Tuneyuki Ohkubo
-
Publication number: 20040260039Abstract: There are disclosed a process for producing an organic compound in the presence of a particular substituted triarylphosphine compound, particularly, a process for producing an oxyalkylene derivative at a high yield using the above compound which is very active and easy to handle, by reacting an organic epoxy compound with a carboxylic acid ester, a carboxylic acid anhydride, a sulfonic acid ester or a carbonic acid ester, and an epoxy resin composition using a particular substituted triarylphosphine compound as a curing accelerator, a cured material of the composition and a semiconductor device using the composition.Type: ApplicationFiled: June 2, 2004Publication date: December 23, 2004Inventors: Naritoshi Yoshimura, Tadahito Nobori, Yoshihiro Yamamoto, Takaomi Hayashi, Shinji Kiyono, Tatsuhiro Urakami, Tomoyuki Kawabata, Sunao Maeda