Patents by Inventor Narsingh B. Singh
Narsingh B. Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10629767Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.Type: GrantFiled: December 27, 2018Date of Patent: April 21, 2020Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATIONInventors: Narsingh B. Singh, John V. Veliadis, Bettina Nechay, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, Marc Sherwin
-
Publication number: 20190131480Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.Type: ApplicationFiled: December 27, 2018Publication date: May 2, 2019Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATIONInventors: NARSINGH B. SINGH, JOHN V. VELIADIS, BETTINA NECHAY, ANDRE BERGHMANS, DAVID J. KNUTESON, DAVID KAHLER, BRIAN WAGNER, MARC SHERWIN
-
Patent number: 10211359Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.Type: GrantFiled: November 18, 2016Date of Patent: February 19, 2019Assignee: Northrop Grumman Systems CorporationInventors: Narsingh B. Singh, John V. Veliadis, Bettina Nechay, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, Marc Sherwin
-
Publication number: 20170194527Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.Type: ApplicationFiled: November 18, 2016Publication date: July 6, 2017Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATIONInventors: NARSINGH B. SINGH, JOHN V. VELIADIS, BETTINA NECHAY, ANDRE BERGHMANS, DAVID J. KNUTESON, DAVID KAHLER, BRIAN WAGNER, MARC SHERWIN
-
Patent number: 9570646Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.Type: GrantFiled: February 20, 2014Date of Patent: February 14, 2017Assignee: Northrop Grumman Systems CorporationInventors: Narsingh B. Singh, John V. Veliadis, Bettina Nechay, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, Marc Sherwin
-
Publication number: 20150236186Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.Type: ApplicationFiled: February 20, 2014Publication date: August 20, 2015Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATIONInventors: NARSINGH B. SINGH, John V. Veliadis, Bettina Nechay, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, Marc Sherwin
-
Patent number: 8278666Abstract: The disclosure relates to a high purity 2H-SiC composition and methods for making same. The embodiments represented herein apply to both thin film and bulk growth of 2H-SiC. According to one embodiment, the disclosure relates to doping an underlying substrate or support layer with one or more surfactants to nucleate and grow high purity 2H-SiC. In another embodiment, the disclosure relates to a method for preparing 2H-SiC compositions by nucleating 2H-SiC on another SiC polytype using one or more surfactants. The surfactants can include AlN, Te, Sb and similar compositions. These nucleate SiC into disc form which changes to hexagonal 2H-SiC material.Type: GrantFiled: June 23, 2010Date of Patent: October 2, 2012Assignee: Northrop Grumman Systems CorporationInventors: Narsingh B. Singh, Sean R. McLaughlin, Thomas J. Knight, Robert M. Young, Brian P. Wagner, David A. Kahler, Andre E. Berghmans, David J. Knuteson, Ty R. McNutt, Jerry W. Hedrick, Jr., George M. Bates, Kenneth Petrosky
-
Patent number: 7855108Abstract: A Si(1-x)MxC material for heterostructures on SiC can be grown by CVD, PVD and MOCVD. SIC doped with a metal such as Al modifies the bandgap and hence the heterostructure. Growth of SiC Si(1-x)MxC heterojunctions using SiC and metal sources permits the fabrication of improved HFMTs (high frequency mobility transistors), HBTs (heterojunction bipolar transistors), and HEMTs (high electron mobility transistors).Type: GrantFiled: February 26, 2010Date of Patent: December 21, 2010Assignee: Northrop Grumman Systems CorporationInventors: Narsingh B. Singh, Brian P. Wagner, David J. Knuteson, Michael E. Aumer, Andre Berghmans, Darren Thomson, David Kahler
-
Patent number: 7830644Abstract: Methods of producing polycrystalline and single crystal dielectrics are disclosed, including dielectrics comprising CaCu3Ti4O12 or La3Ga5SiO4. Superior single crystals are manufactured with improved crystallinity by atomic lattice constant adjustments to the dielectric and to the substrate on which it is grown. Dielectric materials made according to the disclosed methods are useful for manufacture of energy storage devices, e.g. capacitors.Type: GrantFiled: March 5, 2007Date of Patent: November 9, 2010Assignee: Northop Grumman Systems CorporationInventors: Narsingh B. Singh, John J. Talvacchio, Marc Sherwin, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, John D. Adam
-
Publication number: 20100192840Abstract: A Si(1-x)MxC material for heterostructures on SiC can be grown by CVD, PVD and MOCVD. SIC doped with a metal such as Al modifies the bandgap and hence the heterostructure. Growth of SiC Si(1-x)MxC heterojunctions using SiC and metal sources permits the fabrication of improved HFMTs (high frequency mobility transistors), HBTs (heterojunction bipolar transistors), and HEMTs (high electron mobility transistors).Type: ApplicationFiled: February 26, 2010Publication date: August 5, 2010Applicant: Northrop Grumman Systems CorporationInventors: Narsingh B. Singh, Brian P. Wagner, David J. Knuteson, Michael E. Aumer, Andre Berghmans, Darren Thomson, David Kahler
-
Patent number: 7683400Abstract: A Si(1-x)MxC material for heterostructures on SiC can be grown by CVD, PVD and MOCVD. SIC doped with a metal such as Al modifies the bandgap and hence the heterostructure. Growth of SiC Si(1-x)MxC heterojunctions using SiC and metal sources permits the fabrication of improved HFMTs (high frequency mobility transistors), HBTs (heterojunction bipolar transistors), and HEMTs (high electron mobility transistors).Type: GrantFiled: June 26, 2006Date of Patent: March 23, 2010Assignee: Northrop Grumman Systems CorporationInventors: Narsingh B. Singh, Brian P. Wagner, David J. Knuteson, Michael E. Aumer, Andre Berghmans, Darren Thomson, David Kahler
-
Publication number: 20090283824Abstract: In one embodiment, the disclosure relates to a low-power semiconductor switching device, having a substrate supporting thereon a semiconductor body; a source electrode coupled to the semiconductor body at a source interface region; a drain electrode coupled to the semiconductor body at a drain interface region; a gate oxide film formed over a region of the semiconductor body, the gate oxide film interfacing between a gate electrode and the semiconductor body; wherein at least one of the source interface region or the drain interface region defines a sharp junction into the semiconductor body.Type: ApplicationFiled: October 24, 2008Publication date: November 19, 2009Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATIONInventors: Thomas J. Knight, Eric J. Stewart, Joseph T. Smith, Sean McLaughlin, Narsingh B. Singh
-
Publication number: 20090220801Abstract: The disclosure relates to a method and apparatus for growth of high-purity 6H SiC single crystal using a sputtering technique. In one embodiment, the disclosure relates to a method for depositing a high purity 6H-SiC single crystal film on a substrate, the method including: providing a silicon substrate having an etched surface; placing the substrate and an SiC source in a deposition chamber; achieving a first vacuum level in the deposition chamber; pressurizing the chamber with a gas; depositing the SiC film directly on the etched silicon substrate from a sputtering source by: heating the substrate to a temperature below silicon melting point, using a low energy plasma in the deposition chamber; and depositing a layer of hexagonal SiC film on the etched surface of the substrate.Type: ApplicationFiled: February 29, 2008Publication date: September 3, 2009Inventors: Brian Wagner, Travis J. Randall, Thomas J. Knight, David J. Knuteson, David Kahler, Andre E. Berghmans, Sean R. McLaughlin, Narsingh B. Singh, Mark Usefara
-
Publication number: 20080218940Abstract: Methods of producing polycrystalline and single crystal dielectrics are disclosed, including dielectrics comprising CaCu3Ti4O12 or La3Ga5SiO4. Superior single crystals are manufactured with improved crystallinity by atomic lattice constant adjustments to the dielectric and to the substrate on which it is grown. Dielectric materials made according to the disclosed methods are useful for manufacture of energy storage devices, e.g. capacitors.Type: ApplicationFiled: March 5, 2007Publication date: September 11, 2008Applicant: Northrop Grumman Systems CorporationInventors: Narsingh B. Singh, John J. Talvacchio, Marc Sherwin, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, John D. Adam
-
Patent number: 7327896Abstract: A hyperspectral imaging system is tested in the lab to allow a determination of its response to the emission from a simulated target, of certain wavelengths of radiation which the imaging system will be using during target determination. A broadband IR wavelength generator is used to generate a multiplicity of wavelengths representing the target and an emissions simulator is used to generate wavelengths representing target emission of hot gases. An AOTF is used to delete one or more target wavelengths, and to add one or more emission wavelengths, from and to the transmission path to the imaging system.Type: GrantFiled: September 15, 2004Date of Patent: February 5, 2008Assignee: Northrop Grumman CorporationInventors: Narsingh B. Singh, Tracy-Ann Waite, David Kahler, Andre Berghmans
-
Patent number: 7102809Abstract: Acoustic-optic devices which use a crystal of tellurium into which is launched acoustic shear waves by a lithium niobate transducer in accordance with an input RF signal. Tellurium used in the devices exhibits a figure of merit in the range of around 5,000 to 10,000.Type: GrantFiled: July 22, 2004Date of Patent: September 5, 2006Assignee: Northrop Grumman CorporationInventor: Narsingh B. Singh
-
Patent number: 5980789Abstract: A new method for improving the mechanical properties and nonlinear optical performance characteristics of gallium selenide crystals (GaSe) is disclosed. A charge of GaSe crystals was doped with indium before being made into a crystal. The indium-doped GaSe crystals have improved physical properties in that they can be cut along the cleave planes and the cleaved surfaces polished without the usual delaminations typically observed in prior art pure GaSe crystals. The indium-doped crystals were tested in a second harmonic generation (SHG) system and found to have nearly twice the SHG efficiency as pure, or undoped, GaSe crystals.Type: GrantFiled: April 10, 1998Date of Patent: November 9, 1999Assignee: The United States of America as represented by the Secretary of the Air ForceInventors: Nils C. Fernelius, Narsingh B. Singh, Dennis R. Suhre, Vijay Balakrishna
-
Patent number: 5837054Abstract: Crystals formed of a solid-solution of NiSiF.sub.6 6H.sub.2 O provide very good materials for filtering ultraviolet light and will not deteriorate in temperatures as high as 115.degree. C. They are particularly useful in sensing devices which seek to identify the presence of ultraviolet light in the UV missile warning band.Type: GrantFiled: August 30, 1996Date of Patent: November 17, 1998Assignee: Northrop Grumman CorporationInventors: Narsingh B. Singh, William D. Partlow, Steven Strauch, Albert M. Stewart, John F. Jackovitz, David W. Coffey, Robert Mazelski
-
Patent number: 5788765Abstract: Crystals formed of a solid-solution of K.sub.2 Ni(SO.sub.4).sub.2 6H.sub.2 O provide very good materials for filtering ultraviolet light and will not deteriorate in temperatures as high as 110.degree. C. They are particularly useful in sensing devices which seek to identify the presence of ultraviolet light in the UV missile warning band.Type: GrantFiled: August 30, 1996Date of Patent: August 4, 1998Assignee: Northrop Grumman CorporationInventors: Narsingh B. Singh, William D. Partlow, Steven Strauch, Albert M. Stewart, John F. Jackovitz, David W. Coffey
-
Patent number: 5742428Abstract: Crystals formed of a solid-solution of Ni(BF.sub.4).sub.2 6H.sub.2 O provide very good materials for filtering ultraviolet light and will not deteriorate in temperatures as high as 110.degree. C. They are particularly useful in sensing devices which seek to identify the presence of ultraviolet light in the UV missile warning band.Type: GrantFiled: September 30, 1996Date of Patent: April 21, 1998Assignee: Northrop Grumman CorporationInventors: Narsingh B. Singh, William D. Partlow, Steven Strauch, Albert M. Stewart, John F. Jackovitz, David W. Coffey, Robert Mazelsky, James D.B. Smith