Patents by Inventor Narsingh Bahadur Singh

Narsingh Bahadur Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7888248
    Abstract: A method for growing a SiC-containing film on a Si substrate is disclosed. The SiC-containing film can be formed on a Si substrate by, for example, plasma sputtering, chemical vapor deposition, or atomic layer deposition. The thus-grown SiC-containing film provides an alternative to expensive SiC wafers for growing semiconductor crystals.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: February 15, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Narsingh Bahadur Singh, Brian P. Wagner, David J. Knuteson, David Kahler, Andre E. Berghmans, Michael Aumer, Jerry W. Hedrick, Marc E. Sherwin, Michael M. Fitelson, Mark S. Usefara, Sean McLaughlin, Travis Randall, Thomas J. Knight
  • Patent number: 7737534
    Abstract: A process is provided for fabricating a semiconductor device having a germanium nanofilm layer that is selectively deposited on a silicon substrate in discrete regions or patterns. A semiconductor device is also provided having a germanium film layer that is disposed in desired regions or having desired patterns that can be prepared in the absence of etching and patterning the germanium film layer. A process is also provided for preparing a semiconductor device having a silicon substrate having one conductivity type and a germanium nanofilm layer of a different conductivity type. Semiconductor devices are provided having selectively grown germanium nanofilm layer, such as diodes including light emitting diodes, photodetectors, and like. The method can also be used to make advanced semiconductor devices such as CMOS devices, MOSFET devices, and the like.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: June 15, 2010
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Sean R. McLaughlin, Narsingh Bahadur Singh, Brian Wagner, Andre Berghmans, David J. Knuteson, David Kahler, Anthony A. Margarella
  • Publication number: 20090302426
    Abstract: A process is provided for fabricating a semiconductor device having a germanium nanofilm layer that is selectively deposited on a silicon substrate in discrete regions or patterns. A semiconductor device is also provided having a germanium film layer that is disposed in desired regions or having desired patterns that can be prepared in the absence of etching and patterning the germanium film layer. A process is also provided for preparing a semiconductor device having a silicon substrate having one conductivity type and a germanium nanofilm layer of a different conductivity type. Semiconductor devices are provided having selectively grown germanium nanofilm layer, such as diodes including light emitting diodes, photodetectors, and like. The method can also be used to make advanced semiconductor devices such as CMOS devices, MOSFET devices, and the like.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 10, 2009
    Inventors: Sean R. McLaughlin, Narsingh Bahadur Singh, Brian Wagner, Andre Berghmans, David J. Knuteson, David Kahler, Anthony A. Margarella
  • Patent number: 7525099
    Abstract: A nuclear radiation detection system using narrowband UV crystal filters is disclosed. Since the photons produced during the decay of ?- and ?-radiation can be detected in the spectral range of about 200-350 nm (the ultraviolet range), UV filter based photo sensors are utilized for detection. The nuclear radiation detection system comprises an optical assembly capable of focusing on a source of radiation, a UV filter assembly having a narrowband UV crystal filter and positioned to receive light transmitted through the optical assembly, and a light detector positioned to receive light transmitted through the UV filter assembly. The narrowband UV crystal filter is fabricated from crystals selected from the group consisting of nickel fluorosilicate, nickel fluoroborate, and potassium nickel sulfate. The nickel fluorosilicate, nickel fluoroborate, and potassium nickel sulfate may be doped to achieve even narrower band filter.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: April 28, 2009
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Narsingh Bahadur Singh, Aaron A. Pesetski, Andre Berghmans, Brian P. Wagner, David Kahler, David J. Knuteson, Darren Thomson
  • Publication number: 20090014756
    Abstract: A method for growing a SiC-containing film on a Si substrate is disclosed. The SiC-containing film can be formed on a Si substrate by, for example, plasma sputtering, chemical vapor deposition, or atomic layer deposition. The thus-grown SiC-containing film provides an alternative to expensive SiC wafers for growing semiconductor crystals.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 15, 2009
    Inventors: Narsingh Bahadur Singh, Brian P. Wagner, David J. Knuteson, David Kahler, Andre E. Berghmans, Michael Aumer, Jerry W. Hedrick, Marc E. Sherwin, Michael M. Fitelson, Mark S. Usefara, Sean McLaughlin, Travis Randall, Thomas J. Knight
  • Publication number: 20080206121
    Abstract: A substrate and method for growing a semi-conductive crystal on an alloy film such as (AIN)x(SiC)(1-x) without any buffer layer is disclosed. The (AIN)x(SiC)(1-x) alloy film can be formed on a SiC substrate by a vapor deposition process using AIN and SiC powder as starting materials. The (AIN)x(SiC)(1-x) alloy film provides a better lattice match for GaN or SiC epitaxial growth and reduces defects in epitaxially grown GaN with better lattice match and chemistry.
    Type: Application
    Filed: April 18, 2008
    Publication date: August 28, 2008
    Inventors: Narsingh Bahadur Singh, Brian Wagner, Mike Aumer, Darren Thomson, David Kahler, Andre Berghmans, David J. Knuteson
  • Publication number: 20080179534
    Abstract: A nuclear radiation detection system using narrowband UV crystal filters is disclosed. Since the photons produced during the decay of ?- and ?-radiation can be detected in the spectral range of about 200-350 nm (the ultraviolet range), UV filter based photo sensors are utilized for detection. The nuclear radiation detection system comprises an optical assembly capable of focusing on a source of radiation, a UV filter assembly having a narrowband UV crystal filter and positioned to receive light transmitted through the optical assembly, and a light detector positioned to receive light transmitted through the UV filter assembly. The narrowband UV crystal filter is fabricated from crystals selected from the group consisting of nickel fluorosilicate, nickel fluoroborate, and potassium nickel sulfate. The nickel fluorosilicate, nickel fluoroborate, and potassium nickel sulfate may be doped to achieve even narrower band filter.
    Type: Application
    Filed: January 30, 2007
    Publication date: July 31, 2008
    Inventors: Narsingh Bahadur Singh, Aaron A. Pesetski, Andre Berghmans, Brian P. Wagner, David Kahler, David J. Knuteson, Darren Thomson
  • Patent number: 7371282
    Abstract: A substrate and method for growing a semi-conductive crystal on an alloy film such as (AIN)x(SiC)(1-x) without any buffer layer is disclosed. The (AIN)x(SiC)(1-x) alloy film can be formed on a SiC substrate by a vapor deposition process using AlN and SiC powder as starting materials. The (AIN)x(SiC)(1-x) alloy film provides a better lattice match for GaN or SiC epitaxial growth and reduces defects in epitaxially grown GaN with better lattice match and chemistry.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: May 13, 2008
    Assignee: Northrop Grumman Corporation
    Inventors: Narsingh Bahadur Singh, Brian Wagner, Mike Aumer, Darren Thomson, David Kahler, Andre Berghmans, David J. Knuteson
  • Publication number: 20080096097
    Abstract: Crystals having a narrowband transmission window in the UV range and methods for producing such crystals are disclosed. The method comprises the steps of preparing a saturated nutrient solution of a nickel compound and a dopant salt; and incubating the nutrient solution under conditions suitable for crystal growth. The nickel compound is nickel silicon fluoride, nickel fluoroborate, or potassium nickel sulfate. The dopant salt is a salt of cobalt, calcium, barium, strontium, lead, copper, germanium, praseodymium, neodymium, zinc, lithium, potassium, sodium, rubidium, or cesium. The doped nickel compounds crystals have a narrow transmission window in the UV range and can be used as filters for optical sensors in applications such as the passive missile approach warning systems.
    Type: Application
    Filed: October 16, 2006
    Publication date: April 24, 2008
    Inventor: Narsingh Bahadur Singh
  • Publication number: 20080011223
    Abstract: A substrate and method for growing a semi-conductive crystal on an alloy film such as (AIN)x(SiC)(1-x) without any buffer layer is disclosed. The (AIN)x(SiC)(1-x) alloy film can be formed on a SiC substrate by a vapor deposition process using AlN and SiC powder as starting materials. The (AIN)x(SiC)(1-x) alloy film provides a better lattice match for GaN or SiC epitaxial growth and reduces defects in epitaxially grown GaN with better lattice match and chemistry.
    Type: Application
    Filed: July 12, 2006
    Publication date: January 17, 2008
    Inventors: Narsingh Bahadur Singh, Brian Wagner, Mike Aumer, Darren Thomson, David Kahler, Andre Berghmans, David J. Knuteson