Patents by Inventor Natale M. Ceglio
Natale M. Ceglio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9585236Abstract: A Sn vapor EUV LLP source system for EUV lithography is disclosed. The system generates a Sn vapor column from a supply of Sn liquid. The Sn column has a Sn-atom density of <1019 atoms/cm3 and travels at or near sonic speeds. The system also has a Sn vapor condenser arranged to receive the Sn vapor column and condense the Sn vapor to form recycled Sn liquid. A pulse laser irradiates a section of the Sn vapor column. Each pulse generates an under-dense Sn plasma having an electron density of <1019 electrons/cm3, thereby allowing the under-dense Sn plasma substantially isotropically emit EUV radiation.Type: GrantFiled: April 24, 2014Date of Patent: February 28, 2017Assignee: Media Lario SRLInventors: Natale M. Ceglio, Daniel Stearns, Richard Levesque
-
Patent number: 9057962Abstract: A source-collector module for an extreme ultraviolet (EUV) lithography system, the module including a laser-produced plasma (LPP) that generates EUV radiation and a grazing-incidence collector (GIC) mirror arranged relative thereto and having an input end and an output end. The LPP is formed using an LPP target system wherein a pulsed laser beam travels on-axis through the GIC and is incident upon solid, moveable LPP target. The GIC mirror is arranged relative to the LPP to receive the EUV radiation therefrom at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. An example GIC mirror design is presented that includes a polynomial surface-figure correction to compensate for GIC shell thickness effects, thereby improve far-field imaging performance.Type: GrantFiled: December 2, 2012Date of Patent: June 16, 2015Assignee: Media Lario S.R.L.Inventors: Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Patent number: 8895946Abstract: Source-collector modules for use with EUV lithography systems are disclosed, wherein the source-collector modules employ a laser-produced plasma EUV radiation source and a grazing-incidence collector. The EUV radiation source is generated by first forming an under-dense plasma, and then irradiating the under-dense plasma with infrared radiation of sufficient intensity to create a final EUV-emitting plasma. The grazing incidence collector can include a grating configured to prevent infrared radiation from reaching the intermediate focus. Use of debris mitigation devices preserves the longevity of operation of the source-collector modules.Type: GrantFiled: February 7, 2013Date of Patent: November 25, 2014Assignee: Media Lario S.R.L.Inventors: Natale M. Ceglio, Daniel Stearns, Jacques Kools, Giuseppe Valsecchi, Fabio Zocchi, Riccardo Binda
-
Publication number: 20140326904Abstract: A Sn vapor EUV LLP source system for EUV lithography is disclosed. The system generates a Sn vapor column from a supply of Sn liquid. The Sn column has a Sn-atom density of <1019 atoms/cm3 and travels at or near sonic speeds. The system also has a Sn vapor condenser arranged to receive the Sn vapor column and condense the Sn vapor to form recycled Sn liquid. A pulse laser irradiates a section of the Sn vapor column. Each pulse generates an under-dense Sn plasma having an electron density of <1019 electrons/cm3, thereby allowing the under-dense Sn plasma substantially isotropically emit EUV radiation.Type: ApplicationFiled: April 24, 2014Publication date: November 6, 2014Applicant: Media Lario S.R.L.Inventors: Natale M. Ceglio, Daniel Stearns, Richard Levesque
-
Patent number: 8873025Abstract: A collector system for extreme ultraviolet (EUV) radiation includes a collector mirror and a radiation-collection enhancement device (RCED) arranged adjacent an aperture member of an illuminator. The collector mirror directs EUV radiation from an EUV radiation source towards the aperture member. The RCED redirects a portion of the EUV radiation that would not otherwise pass through the aperture of the aperture member or that would not have an optimum angular distribution, to pass through the aperture and to have an improved angular distribution better suited to input specifications of an illuminator. This provides the illuminator with greater amount of useable EUV radiation than would otherwise be available from the collector mirror alone, thereby enhancing the performing of an EUV lithography system that uses such a collector system with a RCED.Type: GrantFiled: October 17, 2013Date of Patent: October 28, 2014Assignee: Media Lario S.r.l.Inventors: Natale M. Ceglio, Gopal Vasudevan
-
Publication number: 20140152967Abstract: A source-collector module for an extreme ultraviolet (EUV) lithography system, the module including a laser-produced plasma (LPP) that generates EUV radiation and a grazing-incidence collector (GIC) mirror arranged relative thereto and having an input end and an output end. The LPP is formed using an LPP target system wherein a pulsed laser beam travels on-axis through the GIC and is incident upon solid, moveable LPP target. The GIC mirror is arranged relative to the LPP to receive the EUV radiation therefrom at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. An example GIC mirror design is presented that includes a polynomial surface-figure correction to compensate for GIC shell thickness effects, thereby improve far-field imaging performance.Type: ApplicationFiled: December 2, 2012Publication date: June 5, 2014Inventors: Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Patent number: 8731139Abstract: Evaporate thermal management systems for and methods of grazing incidence collectors (GICs) for extreme ultraviolet (EUV) lithography include a GIC shell interfaced with a jacket to form a structure having a leading end and that defines a chamber. The chamber operably supports at least one wicking layer. A conduit connects the wicking layer to a condenser system that support cooling fluid in a reservoir. When heat is applied to the leading end, the cooling fluid is drawn into the chamber from the condenser unit via capillary action in the wicking layer and an optional gravity assist, while vapor is drawn in the opposite direction from the chamber to the condenser unit. Heat is removed from the condensed vapor at the condenser unit, thereby cooling the GIC mirror shell.Type: GrantFiled: August 10, 2011Date of Patent: May 20, 2014Assignee: Media Lario S.R.L.Inventors: Boris Grek, Daniel Stearns, Natale M. Ceglio
-
Patent number: 8686381Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Sn vapor from a Sn vapor source of the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device may be used to increase the amount of EUV radiation provided to the intermediate focus. An EUV lithography system that utilizes the SOCOMO is also disclosed.Type: GrantFiled: June 28, 2010Date of Patent: April 1, 2014Assignee: Media Lario S.R.L.Inventors: Richard Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Publication number: 20140043595Abstract: A collector system for extreme ultraviolet (EUV) radiation includes a collector mirror and a radiation-collection enhancement device (RCED) arranged adjacent an aperture member of an illuminator. The collector mirror directs EUV radiation from an EUV radiation source towards the aperture member. The RCED redirects a portion of the EUV radiation that would not otherwise pass through the aperture of the aperture member or that would not have an optimum angular distribution, to pass through the aperture and to have an improved angular distribution better suited to input specifications of an illuminator. This provides the illuminator with greater amount of useable EUV radiation than would otherwise be available from the collector mirror alone, thereby enhancing the performing of an EUV lithography system that uses such a collector system with a RCED.Type: ApplicationFiled: October 17, 2013Publication date: February 13, 2014Applicant: Media Lario, S.R.L.Inventors: Natale M. Ceglio, Gopal Vasudevan
-
Patent number: 8587768Abstract: A collector system for extreme ultraviolet (EUV) radiation includes a collector mirror and a radiation-collection enhancement device (RCED) arranged adjacent an aperture member of an illuminator. The collector mirror directs EUV radiation from an EUV radiation source towards the aperture member. The RCED redirects a portion of the EUV radiation that would not otherwise pass through the aperture of the aperture member or that would not have an optimum angular distribution, to pass through the aperture and to have an improved angular distribution better suited to input specifications of an illuminator. This provides the illuminator with greater amount of useable EUV radiation than would otherwise be available from the collector mirror alone, thereby enhancing the performing of an EUV lithography system that uses such a collector system with a RCED.Type: GrantFiled: March 11, 2011Date of Patent: November 19, 2013Assignee: Media Lario S.R.L.Inventors: Natale M. Ceglio, Gopal Vasudevan
-
Patent number: 8344339Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates a rotating Sn rod in the target portion to generate the EUV radiation. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.Type: GrantFiled: August 30, 2010Date of Patent: January 1, 2013Assignee: Media Lario S.R.L.Inventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Patent number: 8330131Abstract: A source-collector module for an extreme ultraviolet (EUV) lithography system, the module including a laser-produced plasma (LPP) that generates EUV radiation and a grazing-incidence collector (GIC) mirror arranged relative thereto and having an input end and an output end. The LPP is formed using an LPP target system wherein a pulsed laser beam travels on-axis through the GIC and is incident upon solid, moveable LPP target. The GIC mirror is arranged relative to the LPP to receive the EUV radiation therefrom at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. An example GIC mirror design is presented that includes a polynomial surface-figure correction to compensate for GIC shell thickness effects, thereby improve far-field imaging performance.Type: GrantFiled: June 18, 2010Date of Patent: December 11, 2012Assignee: Media Lario, S.R.L.Inventors: Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Publication number: 20120281189Abstract: Evaporate thermal management systems for and methods of grazing incidence collectors (GICs) for extreme ultraviolet (EUV) lithography include a GIC shell interfaced with a jacket to form a structure having a leading end and that defines a chamber. The chamber operably supports at least one wicking layer. A conduit connects the wicking layer to a condenser system that support cooling fluid in a reservoir. When heat is applied to the leading end, the cooling fluid is drawn into the chamber from the condenser unit via capillary action in the wicking layer and an optional gravity assist, while vapor is drawn in the opposite direction from the chamber to the condenser unit. Heat is removed from the condensed vapor at the condenser unit, thereby cooling the GIC mirror shell.Type: ApplicationFiled: August 10, 2011Publication date: November 8, 2012Inventors: Boris Grek, Daniel Stearns, Natale M. Ceglio
-
Patent number: 8258485Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Xenon liquid in the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.Type: GrantFiled: August 30, 2010Date of Patent: September 4, 2012Assignee: Media Lario SRLInventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Publication number: 20120050708Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates a rotating Sn rod in the target portion to generate the EUV radiation. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.Type: ApplicationFiled: August 30, 2010Publication date: March 1, 2012Inventors: Richard A. Levesque, Natale M. Ceglio, Glovanni Nocerino, Fabio Zocchi
-
Publication number: 20120050706Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Xenon ice provided by the target portion to an irradiation location. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.Type: ApplicationFiled: August 30, 2010Publication date: March 1, 2012Inventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Publication number: 20120050704Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Xenon liquid in the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.Type: ApplicationFiled: August 30, 2010Publication date: March 1, 2012Inventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Publication number: 20120050707Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates a Sn wire provided by the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.Type: ApplicationFiled: August 30, 2010Publication date: March 1, 2012Inventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Publication number: 20110318694Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Sn vapor from a Sn vapor source of the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device may be used to increase the amount of EUV radiation provided to the intermediate focus. An EUV lithography system that utilizes the SOCOMO is also disclosed.Type: ApplicationFiled: June 28, 2010Publication date: December 29, 2011Inventors: Richard Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
-
Publication number: 20110242515Abstract: A collector system for extreme ultraviolet (EUV) radiation includes a collector mirror and a radiation-collection enhancement device (RCED) arranged adjacent an aperture member of an illuminator. The collector mirror directs EUV radiation from an EUV radiation source towards the aperture member. The RCED redirects a portion of the EUV radiation that would not otherwise pass through the aperture of the aperture member or that would not have an optimum angular distribution, to pass through the aperture and to have an improved angular distribution better suited to input specifications of an illuminator. This provides the illuminator with greater amount of useable EUV radiation than would otherwise be available from the collector mirror alone, thereby enhancing the performing of an EUV lithography system that uses such a collector system with a RCED.Type: ApplicationFiled: March 11, 2011Publication date: October 6, 2011Inventors: Natale M. Ceglio, Gopal Vasudevan