Patents by Inventor Natalia Friedland

Natalia Friedland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230399364
    Abstract: Provided are fusion proteins including an amino acid sequence of an ectodomain of Spike protein of a coronavirus, such as SARS-CoV-2, joined to an amino acid sequence of a ferritin subunit polypeptide. Nanoparticles including such fusion proteins, with surface-exposed trimers of the ectodomain of the Spike protein of the coronavirus, are also provided. Also provided are nucleic acids and vectors encoding the fusion proteins, cells containing such nucleic acid and vectors, immunogenic compositions including the fusion proteins, the nanoparticles, or the vectors, as well as corresponding methods and kits.
    Type: Application
    Filed: August 27, 2021
    Publication date: December 14, 2023
    Applicants: The Board of Trustees of the Leland Stanford Junior University, CZ Biohub SF, LLC
    Inventors: Abigail E. Powell, Payton Anders-Benner Weidenbacher, Natalia Friedland, Mrinmoy Sanyal, Peter S. Kim
  • Patent number: 11459578
    Abstract: Provided are heterologous nucleic acid constructs, vectors and methods for elevating cyclic electron transfer activity, improving carbon concentration, and enhancing carbon fixation in C3 and C4 plants, and algae, and producing biomass or other products from C3 or C4 plants, and algae, selected from among, for example, starches, oils, fatty acids, lipids, cellulose or other carbohydrates, alcohols, sugars, nutraceuticals, pharmaceuticals, fragrance and flavoring compounds, and organic acids, as well as transgenic plants produced thereby. These methods and transgenic plants and algae encompass the expression, or overexpression, of various combinations of genes that improve carbon concentrating systems in plants and algae, such as bicarbonate transport proteins, carbonic anhydrase, light driven proton pump, cyclic electron flow regulators, etc.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: October 4, 2022
    Assignee: NMC, INC.
    Inventors: Richard Thomas Sayre, Somya S. Subramanian, Natalia Friedland
  • Publication number: 20220042031
    Abstract: Provided are heterologous nucleic acid constructs, vectors and methods for elevating cyclic electron transfer activity, improving carbon concentration, and enhancing carbon fixation in C3 and C4 plants, and algae, and producing biomass or other products from C3 or C4 plants, and algae, selected from among, for example, starches, oils, fatty acids, lipids, cellulose or other carbohydrates, alcohols, sugars, nutraceuticals, pharmaceuticals, fragrance and flavoring compounds, and organic acids, as well as transgenic plants produced thereby. These methods and transgenic plants and algae encompass the expression, or overexpression, of various combinations of genes that improve carbon concentrating systems in plants and algae, such as bicarbonate transport proteins, carbonic anhydrase, light driven proton pump, cyclic electron flow regulators, etc.
    Type: Application
    Filed: May 11, 2021
    Publication date: February 10, 2022
    Inventors: Richard Thomas Sayre, Somya S. Subramanian, Natalia Friedland
  • Patent number: 11001853
    Abstract: Provided are heterologous nucleic acid constructs, vectors and methods for elevating cyclic electron transfer activity, improving carbon concentration, and enhancing carbon fixation in C3 and C4 plants, and algae, and producing biomass or other products from C3 or C4 plants, and algae, selected from among, for example, starches, oils, fatty acids, lipids, cellulose or other carbohydrates, alcohols, sugars, nutraceuticals, pharmaceuticals, fragrance and flavoring compounds, and organic acids, as well as transgenic plants produced thereby. These methods and transgenic plants and algae encompass the expression, or overexpression, of various combinations of genes that improve carbon concentrating systems in plants and algae, such as bicarbonate transport proteins, carbonic anhydrase, light driven proton pump, cyclic electron flow regulators, etc.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: May 11, 2021
    Assignee: NMC, INC.
    Inventors: Richard Thomas Sayre, Somya S. Subramanian, Natalia Friedland
  • Publication number: 20200347397
    Abstract: Provided are heterologous nucleic acid constructs, vectors and methods for elevating cyclic electron transfer activity, improving carbon concentration, and enhancing carbon fixation in C3 and C4 plants, and algae, and producing biomass or other products from C3 or C4 plants, and algae, selected from among, for example, starches, oils, fatty acids, lipids, cellulose or other carbohydrates, alcohols, sugars, nutraceuticals, pharmaceuticals, fragrance and flavoring compounds, and organic acids, as well as transgenic plants produced thereby. These methods and transgenic plants and algae encompass the expression, or overexpression, of various combinations of genes that improve carbon concentrating systems in plants and algae, such as bicarbonate transport proteins, carbonic anhydrase, light driven proton pump, cyclic electron flow regulators, etc.
    Type: Application
    Filed: June 30, 2020
    Publication date: November 5, 2020
    Inventors: Richard Thomas Sayre, Somya S. Subramanian, Natalia Friedland
  • Patent number: 10696977
    Abstract: Provided are methods for elevating cyclic electron transfer activity, improving carbon concentration, and enhancing carbon fixation in C3 and C4 plants, and algae, and producing biomass or other products from C3 or C4 plants, and algae, selected from among, for example, starches, oils, fatty acids, lipids, cellulose or other carbohydrates, alcohols, sugars, nutraceuticals, pharmaceuticals, fragrance and flavoring compounds, and organic acids, as well as transgenic plants produced thereby. These methods and transgenic plants and algae encompass the expression, or overexpression, of various combinations of genes that improve carbon concentrating systems in plants and algae, such as bicarbonate transport proteins, carbonic anhydrase, light driven proton pump, cyclic electron flow regulators, etc.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: June 30, 2020
    Assignee: NCM, INC.
    Inventors: Richard Thomas Sayre, Somya S. Subramanian, Natalia Friedland
  • Publication number: 20190203222
    Abstract: Provided are methods for elevating cyclic electron transfer activity, improving carbon concentration, and enhancing carbon fixation in C3 and C4 plants, and algae, and producing biomass or other products from C3 or C4 plants, and algae, selected from among, for example, starches, oils, fatty acids, lipids, cellulose or other carbohydrates, alcohols, sugars, nutraceuticals, pharmaceuticals, fragrance and flavoring compounds, and organic acids, as well as transgenic plants produced thereby. These methods and transgenic plants and algae encompass the expression, or overexpression, of various combinations of genes that improve carbon concentrating systems in plants and algae, such as bicarbonate transport proteins, carbonic anhydrase, light driven proton pump, cyclic electron flow regulators, etc.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 4, 2019
    Inventors: Richard Thomas Sayre, Somya S. Subramanian, Natalia Friedland
  • Patent number: 10233458
    Abstract: Provided are methods for elevating cyclic electron transfer activity, improving carbon concentration, and enhancing carbon fixation in C3 and C4 plants, and algae, and producing biomass or other products from C3 or C4 plants, and algae, selected from among, for example, starches, oils, fatty acids, lipids, cellulose or other carbohydrates, alcohols, sugars, nutraceuticals, pharmaceuticals, fragrance and flavoring compounds, and organic acids, as well as transgenic plants produced thereby. These methods and transgenic plants and algae encompass the expression, or overexpression, of various combinations of genes that improve carbon concentrating systems in plants and algae, such as bicarbonate transport proteins, carbonic anhydrase, light driven proton pump, cyclic electron flow regulators, etc.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: March 19, 2019
    Assignee: NMC, INC.
    Inventors: Richard Thomas Sayre, Somya S. Subramanian, Natalia Friedland
  • Publication number: 20170211086
    Abstract: Provided are methods for elevating cyclic electron transfer activity, improving carbon concentration, and enhancing carbon fixation in C3 and C4 plants, and algae, and producing biomass or other products from C3 or C4 plants, and algae, selected from among, for example, starches, oils, fatty acids, lipids, cellulose or other carbohydrates, alcohols, sugars, nutraceuticals, pharmaceuticals, fragrance and flavoring compounds, and organic acids, as well as transgenic plants produced thereby. These methods and transgenic plants and algae encompass the expression, or overexpression, of various combinations of genes that improve carbon concentrating systems in plants and algae, such as bicarbonate transport proteins, carbonic anhydrase, light driven proton pump, cyclic electron flow regulators, etc.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 27, 2017
    Inventors: Richard Thomas Sayre, Somya S. Subramanian, Natalia Friedland