Patents by Inventor Natalie Brill

Natalie Brill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200330778
    Abstract: Methods and systems for programming implantable stimulation devices are disclosed. The disclosed techniques may be applied to a programming interface associated with a clinician's programmer, for example. A user interface allows a user to select stimulation waveforms to be applied at a plurality of electrodes implanted in a patient and to visualize how the waveforms interact with each other and with the patient's tissue. For example, the user interface can display a representation of constructive and destructive activation interactions and can also display time-resolved spatiotemporal behavior during stimulation.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 22, 2020
    Inventors: Dheerendra Kashyap, Natalie Brill
  • Patent number: 10806934
    Abstract: A neuromodulation customization system includes a field definition user interface, a neuromodulation signaling engine, and a supervisor engine. The field definition user interface is to facilitate entry of a customized electrotherapy field definition, with the field definition user interface including a set of input controls for defining field shape, field intensity, and field steering parameters of the customized electrotherapy field. The neuromodulation signaling engine is to produce commands for neuromodulation output circuitry to control generation of a customized electrotherapy field via a set of electrodes based on the customized electrotherapy field definition. The supervisor engine is to assess compliance of the customized electrotherapy field to be generated with applicable predefined criteria, and to modify generation of the customized electrotherapy field in response to an assessed non-compliance with the criteria.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: October 20, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dheerendra Raghavendra Kashyap, Sarvani Grandhe, Natalie A. Brill, Bradley Lawrence Hershey, Changfang Zhu, Sridhar Kothandaraman, Dennis Zottola, Michael A. Moffitt
  • Patent number: 10583286
    Abstract: Aspects of the present disclosure are directed toward apparatuses, systems, and methods for delivering therapy to an adrenal gland of a patient. The apparatuses, systems, and methods may include a housing and a plurality of electrodes arranged with the housing. In addition, one or more of the plurality of electrodes may deliver stimulation energy to modulate L-dopa release.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: March 10, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Lynne E. Swanson, William C. Stoffregen, Bryan A. Clark, Michael X. Govea, Dennis B. Werner, Natalie A. Brill, Pramodsingh H. Thakur
  • Publication number: 20200009374
    Abstract: An implantable electrical stimulation lead can be used for spinal cord stimulation. Leads with segmented electrodes can be used to provide both medial and lateral stimulation. Multiple leads with segmented electrodes can provide paddle-like stimulation. Leads with bent distal portions can facilitate stimulation of multiple elements of the spinal cord and associated anatomy such as, for example, the dorsal column, dorsal, horn, dorsal root ganglia, and the like.
    Type: Application
    Filed: July 5, 2019
    Publication date: January 9, 2020
    Inventors: Joshua Dale Howard, Natalie A. Brill, Michael A. Moffitt, Jacob B. Leven
  • Patent number: 10441788
    Abstract: Aspects of the present disclosure are directed toward apparatuses, systems, and methods for delivering therapy to an adrenal gland of a patient. The apparatuses, systems, and methods may include a lead body that attaches to a portion of the adrenal gland of the patient; and a plurality of electrodes arranged along the lead body. In addition, one or more of the plurality of electrodes may deliver stimulation energy to modulate catecholamine release from chromaffin cells within the adrenal gland.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Lynne E. Swanson, William C. Stoffregen, Bryan A. Clark, Michael X. Govea, Dennis B. Werner, Natalie A. Brill, Pramodsingh H. Thakur
  • Publication number: 20190298992
    Abstract: Methods and systems for providing neuromodulation therapy are disclosed. The systems include an Implantable Pulse Generator (IPG) or External Trial Stimulator (ETS) that is capable of sensing an Evoked Compound Action Potential (ECAP), and (perhaps in conjunction with an external device) is capable of adjusting a stimulation program while based on the sensed ECAP. The stimulation program may include a pre-pulse component that may be adjusted based on the sensed ECAP. Moreover, stimulation may be applied to neural elements timed to coincide with the arrival of ECAPs at those neural elements. The stimulation may enhance or suppress activation of those neural elements.
    Type: Application
    Filed: March 6, 2019
    Publication date: October 3, 2019
    Inventors: Tianhe Zhang, Rosana Esteller, Natalie Brill
  • Publication number: 20190269919
    Abstract: Techniques for determining the trajectory of a one or more dorsal roots and utilizing the trajectories to improve a spinal cord stimulation model are disclosed. A first improvement constructs a target stimulation field along a path that is parallel with the determined trajectory that is nearest to a specified desired location of stimulation. An allocation of stimulation among the electrodes to mimic the target field is computed. A second improvement models a response of neural elements at evaluation positions that are parallel with the trajectories based on the electric field that is generated for the computed allocation of stimulation among the electrodes. The stimulation amplitude is adjusted based on the neural element modeling to maintain stimulation intensity, and the stimulation amplitude and allocation of stimulation among the electrodes are compiled into an electrode configuration that is communicated to a neurostimulator.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 5, 2019
    Inventors: Natalie Brill, Rosana Esteller, Jessica Block
  • Publication number: 20190262609
    Abstract: Systems and methods for controlling delivery of spinal cord stimulation based on a patient-specific computational spinal cord (CSC) model are discussed. An embodiment of a system comprises a data processor to receive a patient dataset representing a neural structure of at least a portion of the patient spinal cord, and extract a feature from the received patient dataset. The system includes a stimulation control circuit to receive a generic CSC model generalized from a patient population that characterizes spinal cord anatomy and physical properties. The stimulation control circuit can generate a patient-specific model by modifying the generic CSC model using the extracted feature, and compute a stimulation parameter value using the patient-specific model. An ambulatory electrostimulator can generate spinal cord stimulation according to the computed stimulation parameter value.
    Type: Application
    Filed: February 26, 2019
    Publication date: August 29, 2019
    Inventors: Natalie A. Brill, Bradley Lawrence Hershey, Ross D. Venook
  • Publication number: 20190247657
    Abstract: This document discusses, among other things, systems and methods for providing pain relief to a patient. Recording circuitry may receive electrical signals corresponding to evoked compound action potentials in the patient that may be produced in response to external stimulation of a location where the patient is experiencing pain. The received electrical signals may be stored in a memory. Internal stimulation may then be applied to the patient and control circuitry may receive electrical signals corresponding to evoked compound action potentials in the patient that may be produced in response to the internal stimulation. The control circuitry may then adjust electrical parameters of the internal stimulation, such as to reduce a difference between the electrical signals corresponding to evoked compound action potentials produced in response to the internal stimulation and electrical signals corresponding to evoked compound action potentials produced in response to the external stimulation.
    Type: Application
    Filed: February 4, 2019
    Publication date: August 15, 2019
    Inventors: Natalie A. Brill, Rosana Esteller
  • Publication number: 20190209849
    Abstract: A system for planning or conducting stimulation includes a display; and a processor that executes instructions configured for: displaying, on the display, a representation of a stimulation effect; obtaining and displaying, on the display, a path for migration of the stimulation effect; receiving a duration or rate for migration of the stimulation effect; and determining a selection of one of more electrodes or optical stimulators for one or more stimulation leads of a stimulation system to produce the stimulation effect and conduct the migration of the stimulation effect along the path according to the duration or rate.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 11, 2019
    Inventors: Bradley Lawrence Hershey, Tianhe Zhang, Natalie A. Brill, Rosana Esteller, Jianwen Gu
  • Publication number: 20190175915
    Abstract: Techniques for steering of target poles formed by implantable electrodes in a stimulator device are disclosed. The steering technique modifies the relative amplitude of target poles once they are steered to an electrode array boundary. Once a target pole is steered to an electrode array boundary, further steering in the direction of that boundary results in a gradual decrease in the relative amplitude of that target pole. Eventually, continued steering in that direction will cause that target pole to disappear. Thus, in the case of a target tripole, continued steering will eventually cause the target tripole to be automatically converted into a target bipole. In another example of steering, target poles defined linearly in one direction can be split in an orthogonal direction to create a target pole configuration that is two-dimensional.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 13, 2019
    Inventors: Natalie A. Brill, Yue Li, Jun Park, Dheerendra Kashyap
  • Publication number: 20190134383
    Abstract: Techniques for determining the location of a physiological midline and utilizing the physiological midline location to improve a spinal cord stimulation model are disclosed. A first improvement constructs a target stimulation field along a line that is parallel with the determined physiological midline. An allocation of stimulation among the electrodes to mimic the target field is computed. A second improvement models a response of neural elements at evaluation positions that are parallel with the physiological midline based on the electric field that is generated for the computed allocation of stimulation among the electrodes. The stimulation amplitude is adjusted based on the neural element modeling to maintain stimulation intensity, and the stimulation amplitude and allocation of stimulation among the electrodes are compiled into an electrode configuration that is communicated to a neurostimulator.
    Type: Application
    Filed: September 19, 2018
    Publication date: May 9, 2019
    Inventors: Natalie Brill, Raul Serrano Carmona, Rosana Esteller
  • Publication number: 20190111253
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for delivering therapy to an adrenal gland of a patient. The apparatuses, systems, and methods may include a plurality of stimulation elements arranged configured to deliver stimulation energy through at least one of the plurality of stimulation elements to modulate aldosterone levels within the patient.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 18, 2019
    Inventors: Lynne E Swanson, Barbara Huibregtse, Bryan A. Clark, Dennis B. Werner, Natalie A. Brill, Michael X. Govea, Umang Anand, William C. Stoffregen
  • Publication number: 20190099602
    Abstract: An Implantable Pulse Generator (IPG) or External Trial Stimulator (ETS) system is disclosed that is capable of sensing an Evoked Compound Action Potential (ECAP), and (perhaps in conjunction with an external device) is capable of adjusting a stimulation program while keeping a location of a Central Point of Stimulation (CPS) constant. Specifically, one or more features of measured ECAP(s) indicative of its shape and size are determined, and compared to thresholds or ranges to modify the electrode configuration of the stimulation program.
    Type: Application
    Filed: September 19, 2018
    Publication date: April 4, 2019
    Inventors: Rosana Esteller, Goran N. Marnfeldt, Natalie A. Brill, David M. Wagenbach, Pujitha Weerakoon, Jordi Parramon
  • Publication number: 20180104480
    Abstract: Aspects of the present disclosure are directed toward apparatuses, systems, and methods for delivering therapy to an adrenal gland of a patient. The apparatuses, systems, and methods may include a housing and a plurality of electrodes arranged with the housing. In addition, one or more of the plurality of electrodes may deliver stimulation energy to modulate L-dopa release.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 19, 2018
    Inventors: Lynne E. Swanson, William C. Stoffregen, Bryan A. Clark, Michael X. Govea, Dennis B. Werner, Natalie A. Brill, Pramodsingh H. Thakur
  • Publication number: 20180056071
    Abstract: Aspects of the present disclosure are directed towards apparatuses, systems, and methods that include at least one implantable medical device. The implantable medical device may include a leadless body portion configured to engage an adrenal gland of a patient and at least one electrode, arranged within the leadless body portion, configured to deliver stimulation energy to modulate catecholamine release from chromaffin cells within the adrenal gland.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 1, 2018
    Inventors: Lynne E. Swanson, Bryan A. Clark, Dennis B. Werner, William C. Stoffregen, Michael X. Govea, Natalie A. Brill
  • Publication number: 20180056062
    Abstract: Aspects of the present disclosure are directed toward apparatuses, systems, and methods for delivering therapy to an adrenal gland of a patient. The apparatuses, systems, and methods may include a lead body that attaches to a portion of the adrenal gland of the patient; and a plurality of electrodes arranged along the lead body. In addition, one or more of the plurality of electrodes may deliver stimulation energy to modulate catecholamine release from chromaffin cells within the adrenal gland.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 1, 2018
    Inventors: Lynne E. Swanson, William C. Stoffregen, Bryan A. Clark, Michael X. Govea, Dennis B. Werner, Natalie A. Brill, Pramodsingh H. Thakur
  • Publication number: 20180056078
    Abstract: A neuromodulation customization system includes a field definition user interface, a neuromodulation signaling engine, and a supervisor engine. The field definition user interface is to facilitate entry of a customized electrotherapy field definition, with the field definition user interface including a set of input controls for defining field shape, field intensity, and field steering parameters of the customized electrotherapy field. The neuromodulation signaling engine is to produce commands for neuromodulation output circuitry to control generation of a customized electrotherapy field via a set of electrodes based on the customized electrotherapy field definition. The supervisor engine is to assess compliance of the customized electrotherapy field to be generated with applicable predefined criteria, and to modify generation of the customized electrotherapy field in response to an assessed non-compliance with the criteria.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 1, 2018
    Inventors: Dheerendra Raghavendra Kashyap, Sarvani Grandhe, Natalie A. Brill, Bradley Lawrence Hershey, Changfang Zhu, Sridhar Kothandaraman, Dennis Zottola, Michael A. Moffitt
  • Patent number: 9603538
    Abstract: An implantable cuff includes an elastic collar, at least one conductive segment disposed on or within the elastic collar, and at least one conductor in electrical communication with the at least one conductive segment. The elastic collar defines an internal opening configured to receive an internal body tissue. At least a portion of the elastic collar includes a stiffening region having a stiffness greater than a second region of the elastic collar. The at least one conductor is configured to operably mate with an apparatus capable of delivering electrical stimulation to, and/or recording an electrical activity of, the internal body tissue.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: March 28, 2017
    Assignee: Case Western Reserve University
    Inventors: Lee Fisher, Matthew Stone, Dustin J. Tyler, Daniel Tan, Matthew Schiefer, Natalie Brill, Michael Miller, Ronald Triolo
  • Publication number: 20170056642
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
    Type: Application
    Filed: August 23, 2016
    Publication date: March 2, 2017
    Inventors: Michael A. Moffitt, Natalie A. Brill, Jianwen Gu, Juan Gabriel Hincapie Ordonez, Changfang Zhu, Hemant Bokil, Stephen Carcieri