Patents by Inventor Natalie Gunn

Natalie Gunn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10024851
    Abstract: A reusable coating for a nanopore structure is disclosed herein. A nanopore structure includes a substrate comprising a nanochannel and a monolayer of a chemical compound disposed onto at least a portion of a surface of the nanochannel. The chemical compound forms a reversible bond with at least one analyte binding compound introduced into the nanochannel. Methods for making and using the reusable coating are also disclosed.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: July 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Natalie Gunn, Jose M. Lobez Comeras, Priscilla Rogers, John Wagner
  • Patent number: 10024852
    Abstract: A reusable coating for a nanopore structure is disclosed herein. A nanopore structure includes a substrate comprising a nanochannel and a monolayer of a chemical compound disposed onto at least a portion of a surface of the nanochannel. The chemical compound forms a reversible bond with at least one analyte binding compound introduced into the nanochannel. Methods for making and using the reusable coating are also disclosed.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: July 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Natalie Gunn, Jose M. Lobez Comeras, Priscilla Rogers, John Wagner
  • Publication number: 20180172632
    Abstract: Translocation events are sensed using composite nanopore assemblies including nanopores formed in graphene sheets. Single molecule detection and characterization and multi-molecule characterization and identification are provided using such assemblies. Multiple electrodes associated with nanofluidic sensors facilitate detection of ionic current through a nanopore as well as tunneling currents. Current signals of individual molecules are estimated from the combination of an ionic current signal through the nanopore and tunneling current signals obtained at specific locations within the nanopore.
    Type: Application
    Filed: February 10, 2018
    Publication date: June 21, 2018
    Inventors: Julia S. Baldauf, Matthew Downton, Natalie Gunn, Stefan Harrer, Sridhar Kannam, Christine Schieber, John M. Wagner
  • Patent number: 9921181
    Abstract: Translocation events are sensed using composite nanopore assemblies including nanopores formed in graphene sheets. Single molecule detection and characterization and multi-molecule characterization and identification are provided using such assemblies. Multiple electrodes associated with nanofluidic sensors facilitate detection of ionic current through a nanopore as well as tunneling currents. Current signals of individual molecules are estimated from the combination of an ionic current signal through the nanopore and tunneling current signals obtained at specific locations within the nanopore.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: March 20, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Julia S. Baldauf, Matthew Downton, Natalie Gunn, Stefan Harrer, Sridhar Kannam, Christine Schieber, John M. Wagner
  • Patent number: 9791453
    Abstract: A mechanism is provided for utilizing a nanodevice to distinguish molecules with different structure. The molecules translocate through or across a nanochannel filled with a electrolyte solution. An electrical signal through the nanochannel is measured for every translocation event. Inner surfaces of the nanochannel include a functional layer, which is a coating to functionalize the nanochannel, in which the functional layer is configured to interact with predetermined ones of the molecules during translocation events. It is determined that a combination of at least two different molecules is formed based on predetermined ones of the molecules interacting with the functional layer to change the electrical signal and/or change a translocation time for the translocation event.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: October 17, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, THE UNIVERSITY OF MELBOURNE, FLOREY INSTITUTE OF NEUROSCIENCE AND MENTAL HEALTH
    Inventors: Matthew Downton, Natalie Gunn, Stefan Harrer, Priscilla Rogers, John Wagner, Ross Bathgate, Daniel Scott, Stan Skafidas
  • Publication number: 20150377830
    Abstract: Translocation events are sensed using composite nanopore assemblies including nanopores formed in graphene sheets. Single molecule detection and characterization and multi-molecule characterization and identification are provided using such assemblies. Multiple electrodes associated with nanofluidic sensors facilitate detection of ionic current through a nanopore as well as tunneling currents. Current signals of individual molecules are estimated from the combination of an ionic current signal through the nanopore and tunneling current signals obtained at specific locations within the nanopore.
    Type: Application
    Filed: August 7, 2014
    Publication date: December 31, 2015
    Inventors: Julia S. Baldauf, Matthew Downton, Natalie Gunn, Stefan Harrer, Sridhar Kannam, Christine Schieber, John M. Wagner
  • Publication number: 20150104877
    Abstract: A reusable coating for a nanopore structure is disclosed herein. A nanopore structure includes a substrate comprising a nanochannel and a monolayer of a chemical compound disposed onto at least a portion of a surface of the nanochannel. The chemical compound forms a reversible bond with at least one analyte binding compound introduced into the nanochannel. Methods for making and using the reusable coating are also disclosed.
    Type: Application
    Filed: November 4, 2013
    Publication date: April 16, 2015
    Applicant: International Business Machines Corporation
    Inventors: Natalie Gunn, Jose M. Lobez Comeras, Priscilla Rogers, John Wagner
  • Publication number: 20150104352
    Abstract: A reusable coating for a nanopore structure is disclosed herein. A nanopore structure includes a substrate comprising a nanochannel and a monolayer of a chemical compound disposed onto at least a portion of a surface of the nanochannel. The chemical compound forms a reversible bond with at least one analyte binding compound introduced into the nanochannel. Methods for making and using the reusable coating are also disclosed.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: International Business Machines Corporation
    Inventors: Natalie Gunn, Jose M. Lobez Comeras, Priscilla Rogers, John Wagner
  • Patent number: 8835362
    Abstract: A mechanism is provided for utilizing a nanodevice to distinguish molecules with different structure. The molecules translocate through or across a nanochannel filled with a electrolyte solution. An electrical signal through the nanochannel is measured for every translocation event. Inner surfaces of the nanochannel include a functional layer, which is a coating to functionalize the nanochannel, in which the functional layer is configured to interact with predetermined ones of the molecules during translocation events. It is determined that a combination of at least two different molecules is formed based on predetermined ones of the molecules interacting with the functional layer to change the electrical signal and/or change a translocation time for the translocation event.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: September 16, 2014
    Assignees: International Business Machines Corporation, The University of Melbourne, Florey Institute of Neuroscience and Mental Health
    Inventors: Matthew Downtown, Natalie Gunn, Stefan Harrer, Priscilla Rogers, John Wagner, Ross Bathgate, Daniel James Scott, Stan Skafidas
  • Publication number: 20140179541
    Abstract: A mechanism is provided for utilizing a nanodevice to distinguish molecules with different structure. The molecules translocate through or across a nanochannel filled with a electrolyte solution. An electrical signal through the nanochannel is measured for every translocation event. Inner surfaces of the nanochannel include a functional layer, which is a coating to functionalize the nanochannel, in which the functional layer is configured to interact with predetermined ones of the molecules during translocation events. It is determined that a combination of at least two different molecules is formed based on predetermined ones of the molecules interacting with the functional layer to change the electrical signal and/or change a translocation time for the translocation event.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, FLOREY INSTITUTE OF NEUROSCIENCE & MENTAL HEALTH, THE UNIVERSITY OF MELBOURNE
    Inventors: Matthew Downtown, Natalie Gunn, Stefan Harrer, Priscilla Rogers, John Wagner, Ross Bathgate, Daniel James Scott, Stan Skafidas
  • Publication number: 20140179540
    Abstract: A mechanism is provided for utilizing a nanodevice to distinguish molecules with different structure. The molecules translocate through or across a nanochannel filled with a electrolyte solution. An electrical signal through the nanochannel is measured for every translocation event. Inner surfaces of the nanochannel include a functional layer, which is a coating to functionalize the nanochannel, in which the functional layer is configured to interact with predetermined ones of the molecules during translocation events. It is determined that a combination of at least two different molecules is formed based on predetermined ones of the molecules interacting with the functional layer to change the electrical signal and/or change a translocation time for the translocation event.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, FLOREY NEUROSCIENCE INSTITUTE, UNIVERSITY OF MELBOURNE
    Inventors: Matthew Downtown, Natalie Gunn, Stefan Harrer, Priscilla Rogers, John Wagner, Ross Bathgate, Daniel Scott, Stan Skafidas