Patents by Inventor Natalie Kruk

Natalie Kruk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11131026
    Abstract: Methods for forming sintered-bonded high temperature coatings over ceramic turbomachine components are provided, as are ceramic turbomachine components having such high temperature coatings formed thereover. In one embodiment, the method includes the step or process of removing a surface oxide layer from the ceramic component body of a turbomachine component to expose a treated surface of the ceramic component body. A first layer of coating precursor material, which has a solids content composed predominately of at least one rare earth silicate by weight percentage, is applied to the treated surface. The first layer of the coating precursor material is then heat treated to sinter the solids content and form a first sintered coating layer bonded to the treated surface. The steps of applying and sintering the coating precursor may be repeated, as desired, to build a sintered coating body to a desired thickness over the ceramic component body.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: September 28, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Reza Oboodi, James Piascik, Donald M. Olson, Natalie Kruk, Terence Whalen
  • Publication number: 20210180190
    Abstract: A coated turbomachine component includes a ceramic component body having a principal surface. The component includes a high temperature coating. The high temperature coating includes a sintered coating body bonded directly to and intimately contacting the principal surface of the ceramic component body. The sintered coating body has a minimum porosity adjacent the principal surface and a maximum porosity at a location further from the principal surface, as taken along an axis orthogonal to the principal surface.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 17, 2021
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Reza Oboodi, James Piascik, Donald M. Olson, Natalie Kruk, Terence Whalen
  • Publication number: 20200370182
    Abstract: Methods for forming sintered-bonded high temperature coatings over ceramic turbomachine components are provided, as are ceramic turbomachine components having such high temperature coatings formed thereover. In one embodiment, the method includes the step or process of removing a surface oxide layer from the ceramic component body of a turbomachine component to expose a treated surface of the ceramic component body. A first layer of coating precursor material, which has a solids content composed predominately of at least one rare earth silicate by weight percentage, is applied to the treated surface. The first layer of the coating precursor material is then heat treated to sinter the solids content and form a first sintered coating layer bonded to the treated surface. The steps of applying and sintering the coating precursor may be repeated, as desired, to build a sintered coating body to a desired thickness over the ceramic component body.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Reza Oboodi, James Piascik, Donald M. Olson, Natalie Kruk, Terence Whalen
  • Patent number: 10801111
    Abstract: Methods for forming sintered-bonded high temperature coatings over ceramic turbomachine components are provided, as are ceramic turbomachine components having such high temperature coatings formed thereover. In one embodiment, the method includes the step or process of removing a surface oxide layer from the ceramic component body of a turbomachine component to expose a treated surface of the ceramic component body. A first layer of coating precursor material, which has a solids content composed predominately of at least one rare earth silicate by weight percentage, is applied to the treated surface. The first layer of the coating precursor material is then heat treated to sinter the solids content and form a first sintered coating layer bonded to the treated surface. The steps of applying and sintering the coating precursor may be repeated, as desired, to build a sintered coating body to a desired thickness over the ceramic component body.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: October 13, 2020
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Reza Oboodi, James Piascik, Donald M. Olson, Natalie Kruk, Terence Whalen
  • Publication number: 20180347049
    Abstract: Methods for forming sintered-bonded high temperature coatings over ceramic turbomachine components are provided, as are ceramic turbomachine components having such high temperature coatings formed thereover. In one embodiment, the method includes the step or process of removing a surface oxide layer from the ceramic component body of a turbomachine component to expose a treated surface of the ceramic component body. A first layer of coating precursor material, which has a solids content composed predominately of at least one rare earth silicate by weight percentage, is applied to the treated surface. The first layer of the coating precursor material is then heat treated to sinter the solids content and form a first sintered coating layer bonded to the treated surface. The steps of applying and sintering the coating precursor may be repeated, as desired, to build a sintered coating body to a desired thickness over the ceramic component body.
    Type: Application
    Filed: May 30, 2017
    Publication date: December 6, 2018
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Reza Oboodi, James Piascik, Donald M. Olson, Natalie Kruk, Terence Whalen
  • Publication number: 20180252119
    Abstract: Engine structures and methods of forming the engine structures are provided herein. In an embodiment, an engine structure includes a silicon-based ceramic-containing substrate having an in-tolerance surface and one or more barrier layers disposed on the in-tolerance surface of the ceramic-containing substrate. The ceramic-containing substrate includes a bulk zone and a gradient zone. The bulk zone includes a first bulk material. The gradient zone includes the first bulk material and a second material that is different from the first bulk material. The gradient zone has a gradient of increasing concentration of the second material from the bulk zone to the in-tolerance surface of the ceramic-containing substrate.
    Type: Application
    Filed: March 1, 2017
    Publication date: September 6, 2018
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Terence Whalen, Reza Oboodi, James Piascik, Don Martin Olson, Natalie Kruk
  • Publication number: 20160305004
    Abstract: Coated substrates and methods of producing the same are provided. In an exemplary embodiment, a method of coating a substrate includes brazing a first bond coat layer to the substrate, where the substrate includes a ceramic material. A second bond coat layer is plasma sprayed overlying the first bond coat layer to form a composite bond coat with the first bond coat layer positioned between the second bond coat layer and the substrate. An environmental barrier coating layer is applied overlying the second bond coat layer such that the first and second bond coat layers are positioned between the substrate and the environmental barrier coating layer.
    Type: Application
    Filed: April 20, 2015
    Publication date: October 20, 2016
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Don Olson, Reza Oboodi, Natalie Kruk, Bradley Reed Tucker