Patents by Inventor Natascha HENZE

Natascha HENZE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11535940
    Abstract: The invention relates to use of an adhesion promoting organic compound comprising at least one tertiary amine group, bonded via a bridge-constituting divalent radical, with the carbonyl carbon atom of an amide group, wherein the bridge-constituting divalent radical comprises two carbon atoms as bridge atoms, for anticorrosion pretreatment of metallic materials before painting and to aqueous compositions containing the adhesion promoting organic compound which generate conversion layers based on the elements Zr, Ti and/or Si. The present invention further comprises a process for anticorrosion coating of components at least partly manufactured from metallic materials comprising a pretreatment using acidic aqueous compositions according to the invention and subsequent painting.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: December 27, 2022
    Assignee: Henkel AG & Co. KGaA
    Inventors: Thomas Moeller, Kristof Wapner, Juergen Stodt, Natascha Henze, Kevin D. Murnaghan, Ralf Posner, Jan-Willem Brouwer, Thomas S. Smith, II, Donald R. Vonk
  • Patent number: 11230768
    Abstract: A multi-step method for anti-corrosion pretreatment of components made from metallic materials, in which a wet chemical treatment with an aqueous composition (A) containing a dissolved and/or dispersed polymer P, which is substituted with heterocycles containing at least one quaternary nitrogen heteroatom, is followed by a conversion treatment based on water-soluble compounds of the elements Zr, Ti, and/or Si before further anti-corrosion coatings are optionally applied.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: January 25, 2022
    Assignee: Henkel AG & Co. KGaA
    Inventors: Sophie Cornen, Kristof Wapner, Ralf Posner, Natascha Henze, Kirsten Agnes Lill, Michiel Gerard Maas
  • Patent number: 10458022
    Abstract: A method for corrosion protection treatment, comprising contacting a series of components having metallic surfaces of iron and/or zinc with a passivating aqueous pretreatment solution, present in a system tank, containing compounds of the elements zirconium and/or titanium, and contacting with a source of fluoride ions wherein a portion of the pretreatment solution is discarded and replaced with a volume portion of one or more such replenishment solutions which in total are at least of equal size, by metered addition to the system tank of the pretreatment and wherein discarding as a function of the molar ratio of the elements fluorine to zirconium and/or titanium must not drop below a predefined value, the metered addition of replenishment solution takes place such that maintaining the concentration of the elements zirconium and/or titanium in the passivating aqueous pretreatment solution in the form of water-soluble compounds is ensured.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: October 29, 2019
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Christian Stromberg, Frank-Oliver Pilarek, Jens Kroemer, Fernando Jose Resano Artalejo, Natascha Henze
  • Publication number: 20190177853
    Abstract: The invention relates to use of an adhesion promoting organic compound comprising at least one tertiary amine group, bonded via a bridge-constituting divalent radical, with the carbonyl carbon atom of an amide group, wherein the bridge-constituting divalent radical comprises two carbon atoms as bridge atoms, for anticorrosion pretreatment of metallic materials before painting and to aqueous compositions containing the adhesion promoting organic compound which generate conversion layers based on the elements Zr, Ti and/or Si. The present invention further comprises a process for anticorrosion coating of components at least partly manufactured from metallic materials comprising a pretreatment using acidic aqueous compositions according to the invention and subsequent painting.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Inventors: Thomas Moeller, Kristof Wapner, Juergen Stodt, Natascha Henze, Kevin D. Murnaghan, Ralf Posner, Jan-Willem Brouwer, Thomas S. Smith, II, Donald R. Vonk
  • Patent number: 9932677
    Abstract: The present invention relates to a method for serial surface treatment of metallic components comprising aluminum surfaces, wherein an alkaline pretreatment is followed by a conversion treatment. According to the invention, the intention during the alkaline pretreatment is that a maximum value for the concentration of dissolved zinc is not exceeded, in order to ensure a sufficient quality of the corrosion-protective coating on the aluminum surface of the components following the surface treatment. In a preferred embodiment, the content of dissolved zinc is effectively held below the respective bath-typical maximum value of dissolved zinc by the addition of compounds constituting a source of sulfide ions. The functionality of the surface treatment can be additionally increased by likewise controlling the content of dissolved aluminum in the alkaline pretreatment such that, by adding compounds constituting a source for silicate anions, a threshold value for dissolved aluminum is not exceeded.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: April 3, 2018
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Frank-Oliver Pilarek, Kirsten Agnes Lill, Fernando Jose Resano Artalejo, Natascha Henze
  • Publication number: 20180051377
    Abstract: A multi-step method for anti-corrosion pretreatment of components made from metallic materials, in which a wet chemical treatment with an aqueous composition (A) containing a dissolved and/or dispersed polymer P, which is substituted with heterocycles containing at least one quaternary nitrogen heteroatom, is followed by a conversion treatment based on water-soluble compounds of the elements Zr, Ti, and/or Si before further anti-corrosion coatings are optionally applied.
    Type: Application
    Filed: October 13, 2017
    Publication date: February 22, 2018
    Inventors: Sophie Cornen, Kristof Wapner, Ralf Posner, Natascha Henze, Kirsten Agnes Lill, Michiel Gerard Maas
  • Publication number: 20170283955
    Abstract: A method for corrosion protection treatment, comprising contacting a series of components having metallic surfaces of iron and/or zinc with a passivating aqueous pretreatment solution, present in a system tank, containing compounds of the elements zirconium and/or titanium, and contacting with a source of fluoride ions wherein a portion of the pretreatment solution is discarded and replaced with a volume portion of one or more such replenishment solutions which in total are at least of equal size, by metered addition to the system tank of the pretreatment and wherein discarding as a function of the molar ratio of the elements fluorine to zirconium and/or titanium must not drop below a predefined value, the metered addition of replenishment solution takes place such that maintaining the concentration of the elements zirconium and/or titanium in the passivating aqueous pretreatment solution in the form of water-soluble compounds is ensured.
    Type: Application
    Filed: June 9, 2017
    Publication date: October 5, 2017
    Inventors: Jan-Willem Brouwer, Christian Stromberg, Frank-Oliver Pilarek, Jens Kroemer, Fernando Jose Resano Artalejo, Natascha Henze
  • Publication number: 20150176138
    Abstract: The present invention relates to a method for serial surface treatment of metallic components comprising aluminum surfaces, wherein an alkaline pretreatment is followed by a conversion treatment. According to the invention, the intention during the alkaline pretreatment is that a maximum value for the concentration of dissolved zinc is not exceeded, in order to ensure a sufficient quality of the corrosion-protective coating on the aluminum surface of the components following the surface treatment. In a preferred embodiment, the content of dissolved zinc is effectively held below the respective bath-typical maximum value of dissolved zinc by the addition of compounds constituting a source of sulfide ions. The functionality of the surface treatment can be additionally increased by likewise controlling the content of dissolved aluminum in the alkaline pretreatment such that, by adding compounds constituting a source for silicate anions, a threshold value for dissolved aluminum is not exceeded.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Inventors: Jan-Willem BROUWER, Frank-Oliver PILAREK, Kirsten Agnes LILL, Fernando Jose RESANO ARTALEJO, Natascha HENZE