Patents by Inventor Nathalie Vermeulen

Nathalie Vermeulen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9915852
    Abstract: A system for conversion or amplification using quasi-phase matched nonlinear optical wave-mixing includes a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, a bent structure for receiving the pump radiation beam and the signal radiation beam, and an outcoupling radiation propagation portion for coupling out an idler radiation beam generated in the bent structure. A radiation propagation portion of the bent structure is made of a uniform three-dimensional material at least partly covered by a two-dimensional or quasi-two-dimensional material layer and has a dimension taking into account the spatial variation of the nonlinear optical susceptibility along the radiation propagation portion as experienced by radiation traveling along the bent structure for obtaining quasi-phase matched nonlinear optical wave-mixing in the radiation propagation portion.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: March 13, 2018
    Assignee: VRIJE UNIVERSITEIT BRUSSEL
    Inventors: Nathalie Vermeulen, Hugo Thienpont
  • Publication number: 20170199443
    Abstract: A system for conversion or amplification using quasi-phase matched nonlinear optical wave-mixing includes a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, a bent structure for receiving the pump radiation beam and the signal radiation beam, and an outcoupling radiation propagation portion for coupling out an idler radiation beam generated in the bent structure. A radiation propagation portion of the bent structure is made of a uniform three-dimensional material at least partly covered by a two-dimensional or quasi-two-dimensional material layer and has a dimension taking into account the spatial variation of the nonlinear optical susceptibility along the radiation propagation portion as experienced by radiation traveling along the bent structure for obtaining quasi-phase matched nonlinear optical wave-mixing in the radiation propagation portion.
    Type: Application
    Filed: March 24, 2017
    Publication date: July 13, 2017
    Inventors: Nathalie VERMEULEN, Hugo THIENPONT
  • Patent number: 9223187
    Abstract: A system for conversion or amplification using quasi-phase matched nonlinear optical wave-mixing comprises a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, and a bent structure for receiving the pump radiation beam and the signal radiation beam. The radiation propagation portion of the bent structure is made of a uniform nonlinear optical material and the radiation propagation portion comprises a dimension taking into account the spatial variation of the nonlinear optical susceptibility along the radiation propagation portion as experienced by radiation travelling along the bent structure for obtaining quasi-phase matched nonlinear optical wave-mixing in the radiation propagation portion. The dimension thereby is substantially inverse proportional with the linear phase mismatch for the nonlinear optical process.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: December 29, 2015
    Assignee: VRIJE UNIVERSITEIT BRUSSEL
    Inventors: Nathalie Vermeulen, John Edward Sipe, Hugo Jean Arthur Thienpont
  • Publication number: 20150015937
    Abstract: A system for conversion or amplification using quasi-phase matched nonlinear optical wave-mixing comprises a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, and a bent structure for receiving the pump radiation beam and the signal radiation beam. The radiation propagation portion of the bent structure is made of a uniform nonlinear optical material and the radiation propagation portion comprises a dimension taking into account the spatial variation of the nonlinear optical susceptibility along the radiation propagation portion as experienced by radiation travelling along the bent structure for obtaining quasi-phase matched nonlinear optical wave-mixing in the radiation propagation portion. The dimension thereby is substantially inverse proportional with the linear phase mismatch for the nonlinear optical process.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 15, 2015
    Applicant: VRIJE UNIVERSITEIT BRUSSEL
    Inventors: Nathalie VERMEULEN, John Edward SIPE, Hugo Jean Arthur THIENPONT
  • Patent number: 8873133
    Abstract: A system for conversion or amplification using quasi-phase matched four-wave-mixing includes a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, and a bent structure for receiving the pump radiation beam and the signal radiation beam. The radiation propagation portion of the bent structure is made of a uniform Raman-active or uniform Kerr-nonlinear material and the radiation propagation portion comprises a dimension taking into account the spatial variation of the Raman susceptibility or Kerr susceptibility along the radiation propagation portion as experienced by radiation travelling along the bent structure for obtaining quasi-phase-matched four-wave-mixing in the radiation propagation portion. The dimension thereby is substantially inverse proportional with the linear phase mismatch for four-wave-mixing.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: October 28, 2014
    Assignee: Vrije Universiteit Brussel
    Inventors: Nathalie Vermeulen, John Edward Sipe, Hugo Jean Arthur Thienpont
  • Publication number: 20130010351
    Abstract: A system for conversion or amplification using quasi-phase matched four-wave-mixing includes a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, and a bent structure for receiving the pump radiation beam and the signal radiation beam. The radiation propagation portion of the bent structure is made of a uniform Raman-active or uniform Kerr-nonlinear material and the radiation propagation portion comprises a dimension taking into account the spatial variation of the Raman susceptibility or Kerr susceptibility along the radiation propagation portion as experienced by radiation travelling along the bent structure for obtaining quasi-phase-matched four-wave-mixing in the radiation propagation portion. The dimension thereby is substantially inverse proportional with the linear phase mismatch for four-wave-mixing.
    Type: Application
    Filed: October 4, 2010
    Publication date: January 10, 2013
    Inventors: Nathalie Vermeulen, John Edward Sipe, Hugo Jean Arthur Thienpont
  • Publication number: 20090052482
    Abstract: A method is described for setting up a system comprising an active medium. The method comprises thermally controlling the system comprising an active medium by radiative cooling. The radiative cooling thereby is based on stimulated and/or coherent Raman scattering processes. In particular embodiments, the thermally controlling may be obtained by tailoring the efficiencies of the Raman scattering processes by optimising at least one of a number of system parameters. The invention furthermore relates to systems thus obtained, to methods for thermally controlling systems comprising an active medium that generate radiation and to computer program products for performing the methods for setting up systems comprising an active medium and thermally controlled by radiative cooling using stimulated and/or coherent Raman scattering processes.
    Type: Application
    Filed: March 12, 2007
    Publication date: February 26, 2009
    Inventors: Nathalie Vermeulen, Peter Muys, Christof Debaes, Hugo Thienpont