Patents by Inventor Nathan Cheung

Nathan Cheung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9159605
    Abstract: A method for forming a multi-material thin film includes providing a multi-material donor substrate comprising single crystal silicon and an overlying film comprising GaN. Energetic particles are introduced through a surface of the multi-material donor substrate to a selected depth within the single crystal silicon. The method includes providing energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate. Then, a cleaving action is made using a propagating cleave front to free a multi-material film from a remaining portion of the donor substrate, the multi-material film comprising single crystal silicon and the overlying film.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: October 13, 2015
    Assignee: SILICON GENESIS CORPORATION
    Inventors: Francois J. Henley, Nathan Cheung
  • Publication number: 20140370687
    Abstract: A method for forming a multi-material thin film includes providing a multi-material donor substrate comprising single crystal silicon and an overlying film comprising GaN. Energetic particles are introduced through a surface of the multi-material donor substrate to a selected depth within the single crystal silicon. The method includes providing energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate. Then, a cleaving action is made using a propagating cleave front to free a multi-material film from a remaining portion of the donor substrate, the multi-material film comprising single crystal silicon and the overlying film.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 18, 2014
    Inventors: Francois J. HENLEY, Nathan CHEUNG
  • Patent number: 8835282
    Abstract: A method for forming a multi-material thin film includes providing a multi-material donor substrate comprising single crystal silicon and an overlying film comprising GaN. Energetic particles are introduced through a surface of the multi-material donor substrate to a selected depth within the single crystal silicon. The method includes providing energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate. Then, a cleaving action is made using a propagating cleave front to free a multi-material film from a remaining portion of the donor substrate, the multi-material film comprising single crystal silicon and the overlying film.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: September 16, 2014
    Assignee: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Nathan Cheung
  • Patent number: 7470600
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: December 30, 2008
    Assignee: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Nathan Cheung
  • Publication number: 20080105301
    Abstract: A photovoltaic device and related methods of manufacture. The device has a support substrate having a support surface region. The device has a thickness of crystalline material characterized by a plurality of worm hole structures therein overlying the support surface region of the support substrate. The worm hole structures are characterized by a density distribution. The one or more worm hole structures have respective surface regions. In a specific embodiment, the thickness of crystalline material has an upper surface region. The device has a passivation material overlying the surface regions to cause a reduction of a electron-hole recombination process. A glue layer is provided between the support surface region and the thickness of crystalline material. A textured surface region formed overlying from the upper surface region of the thickness of crystalline material.
    Type: Application
    Filed: September 10, 2007
    Publication date: May 8, 2008
    Applicant: Silicon China Limited
    Inventors: Yick Chan, Nathan Cheung, Chung Chan
  • Publication number: 20080092948
    Abstract: Method and structure for hydrogenation of silicon substrates with shaped covers. According to an embodiment, the present invention provides a method for fabricating a photovoltaic material. The method includes providing a semiconductor substrate. The method also includes forming a crystalline material characterized by a plurality of worm hole structures therein overlying the semiconductor substrate. The worm hole structures are characterized by a density distribution from a surface region of the crystalline material to a defined depth within a z-direction of the surface region to form a thickness of material to be detached. The method further includes providing a glue layer overlying a surface region of the crystalline material. The method includes joining the surface region of the crystalline material via the glue layer to a support substrate.
    Type: Application
    Filed: September 10, 2007
    Publication date: April 24, 2008
    Applicant: Silicon China Limited
    Inventors: Yick Chan, Pui Ho, Nathan Cheung, Man Wong, Chung Chan
  • Publication number: 20080092949
    Abstract: A photovoltaic device and related methods of manufacture. The device has a support substrate having a support surface region. The device has a thickness of crystalline material overlying the support surface region of the support substrate. Preferably, the thickness of material has an upper surface region. The device has a glue layer provided between the support surface region and the thickness of material according to a specific embodiment. In a preferred embodiment, the device has a textured surface region formed overlying from the upper surface region of the thickness of crystalline material. Depending upon the embodiment, the device has a plurality of elevated regions having a first thickness defining a first portion of the textured surface region and a plurality of recessed regions having a second thickness defining a second portion of the textured surface region.
    Type: Application
    Filed: September 10, 2007
    Publication date: April 24, 2008
    Applicant: Silicon China Limited
    Inventors: Nathan Cheung, Man Wong
  • Patent number: 7348258
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: March 25, 2008
    Assignee: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Nathan Cheung
  • Publication number: 20080057675
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Application
    Filed: August 20, 2007
    Publication date: March 6, 2008
    Applicant: Silicon Genesis Corporation
    Inventors: Francois Henley, Nathan Cheung
  • Publication number: 20080038901
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: Silicon Genesis Corporation
    Inventors: Francois Henley, Nathan Cheung
  • Publication number: 20070123013
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Application
    Filed: January 26, 2007
    Publication date: May 31, 2007
    Applicant: Silicon Genesis Corporation
    Inventors: FRANCOIS HENLEY, Nathan Cheung
  • Publication number: 20070122997
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Application
    Filed: January 26, 2007
    Publication date: May 31, 2007
    Applicant: Silicon Genesis Corporation
    Inventors: FRANCOIS HENLEY, Nathan Cheung
  • Publication number: 20070122995
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Application
    Filed: January 26, 2007
    Publication date: May 31, 2007
    Applicant: Silicon Genesis Corporation
    Inventors: FRANCOIS HENLEY, Nathan Cheung
  • Publication number: 20060141747
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Application
    Filed: November 16, 2005
    Publication date: June 29, 2006
    Applicant: Silicon Genesis Corporation
    Inventors: Francois Henley, Nathan Cheung
  • Publication number: 20050186758
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Application
    Filed: August 19, 2003
    Publication date: August 25, 2005
    Applicant: Silicon Genesis Corporation
    Inventors: Francois Henley, Nathan Cheung
  • Publication number: 20050157301
    Abstract: The present invention relates to a functionally integrated microanalytical system for performing fluorescence spectroscopy. A source of fluorescence-exciting radiation, typically a LED, is integrated onto a substrate along with a photodetector and, in some embodiments, an optical filter. A pixel-to-point laser lift-off process is used to effect this component integration. For those cases in which a filter is required, a thin film bandgap filter is typically used, such as CdS or CdSxSe1-x (0<x<1). A disposable microchannel containing the sample and its fluorescent tag is mounted onto the integrated assembly of LED, photodetector and (optionally) filter. This configuration of components allows the microchannel and sample to be readily removed and replaced, facilitating rapid analysis of multiple samples. Multiple LEDS, detectors and filters (if present) can also be integrated onto the same substrate, permitting multiple wavelength analysis of the sample to be performed concurrently.
    Type: Application
    Filed: July 30, 2004
    Publication date: July 21, 2005
    Applicant: The Regents of the University of California
    Inventors: J. Chediak, Zhongsheng Luo, Timothy Sands, Nathan Cheung, Luke Lee, Jeonggi Seo
  • Publication number: 20050070071
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Application
    Filed: August 6, 2004
    Publication date: March 31, 2005
    Applicant: Silicon Genesis Corporation
    Inventors: Francois Henley, Nathan Cheung
  • Publication number: 20040097055
    Abstract: A technique for forming a gettering layer in a wafer made using a controlled cleaving process. The gettering layer can be made by implanting using beam line or plasma immersion ion implantaion, or made by forming a film of material such as polysilicon by way of chemical vapor deposition. A controlled cleaving process is used to form the wafer, which is a multilayered silicon on insulator substrate. The gettering layer removes and/or attracts impurities in the wafer, which can be detrimental to the functionality and reliability of an integrated circuit device made on the wafer.
    Type: Application
    Filed: March 26, 2003
    Publication date: May 20, 2004
    Applicant: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Nathan Cheung
  • Patent number: 6582999
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) in a selected manner through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth and the particles for a pattern at the selected depth. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: June 24, 2003
    Assignee: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Nathan Cheung
  • Patent number: 6528391
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) in a selected manner through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth and the particles for a pattern at the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: March 4, 2003
    Assignee: Silicon Genesis, Corporation
    Inventors: Francois J. Henley, Nathan Cheung