Patents by Inventor Nathan Cohen

Nathan Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170214144
    Abstract: Aspect of the present disclosure are directed to methods and apparatus producing enhanced radiation characteristics, e.g., wideband behavior, in or for antennas and related components by providing concentric sleeves, with air or dielectric material as a spacer, where the sleeves include one or more conductive layers, at least a portion of which includes fractal resonators closely spaced, in terms of wavelength. A further aspect of the present disclosure is directed to surfaces that include dual-use or multiple-use apertures. Such aperture engine surfaces can include a top (or first) layer of antenna arrays, a middle (or second) layer of a metal-fractal backplane player, and a third (or bottom) layer for solar cell or solar oriented power collection.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventors: Nathan Cohen, Michael Chin
  • Patent number: 9677824
    Abstract: Systems according to the present disclosure provide one or more surfaces that function as heat or power radiating surfaces for which at least a portion of the radiating surface includes or is composed of “fractal cells” placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: June 13, 2017
    Assignee: Fractal Antenna Systems, Inc.
    Inventor: Nathan Cohen
  • Patent number: 9647271
    Abstract: An aspect of the subject technology/invention of the present disclosure includes electrode structures or elements/components that have (e.g., present) fractal and/or self-complementary shapes or structures, e.g., on a surface. Such shapes or structures can be pre-existing. The electrodes can be made of any suitable material. The electrodes may function or operate or be used as a “seed” structure to incorporate or receive a material or materials useful for lattice assisted nuclear reactions and/or cold fusion processes.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: May 9, 2017
    Assignee: Fractal Antenna Systems, Inc.
    Inventor: Nathan Cohen
  • Patent number: 9638479
    Abstract: Systems according to the present disclosure provide one or more surfaces that function as heat or power radiating surfaces for which at least a portion of the radiating surface includes or is composed of “fractal cells” placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: May 2, 2017
    Assignee: Fractal Antenna Systems, Inc.
    Inventor: Nathan Cohen
  • Patent number: 9620853
    Abstract: Aspect of the present disclosure are directed to methods and apparatus producing enhanced radiation characteristics, e.g., wideband behavior, in or for antennas and related components by providing concentric sleeves, with air or dielectric material as a spacer, where the sleeves include one or more conductive layers, at least a portion of which includes fractal resonators closely spaced, in terms of wavelength. A further aspect of the present disclosure is directed to surfaces that include dual-use or multiple-use apertures. Such aperture engine surfaces can include a top (or first) layer of antenna arrays, a middle (or second) layer of a metal-fractal backplane player, and a third (or bottom) layer for solar cell or solar oriented power collection.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: April 11, 2017
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Michael Chin
  • Publication number: 20170061176
    Abstract: Plasmonic-surface antenna systems are described in which resonators, or cells, are closely arranged but do not touch. At least a portion of a radiating surface includes a plurality of cells (operative as resonators) placed very close together to one so that a surface (plasmonic) wave causes near replication of the current of one cell in an adjacent cell. Cells with one or more fractal shapes may be used as a fractal plasmonic surface (FPS). Systems and/or methods are described of using plasmonic surfaces or fractal plasmonic surfaces for radiofrequency identification (RFID). A PS or FPS may act as an intermediary array of antennas, which can serve to connect an RFID reader with one or more RFID tags. Structures including cages are described that can include one or more surfaces that are each an FPS. Methods of power transfer are described.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Inventor: Nathan COHEN
  • Publication number: 20170047167
    Abstract: Novel capacitors that have volumetric components that incorporate one or more folds and/or bends and/or have self-similar structures are disclosed. The components may have surfaces that are fractal in finite iterations for at least a portion of the component; moreover, the components (e.g., opposing capacitive elements) may be self-complementary to one another such that one component is self-complementary to another component in a given capacitor. Methods of using 3D printers to make such capacitors and capacitive components are also described.
    Type: Application
    Filed: November 1, 2016
    Publication date: February 16, 2017
    Inventors: Nathan COHEN, Philip SALKIND
  • Publication number: 20170038160
    Abstract: Systems according to the present disclosure provide one or more surfaces that function as heat or power radiating surfaces for which at least a portion of the radiating surface includes or is composed of “fractal cells” placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges.
    Type: Application
    Filed: October 18, 2016
    Publication date: February 9, 2017
    Applicant: FRACTAL ANTENNA SYSTEMS, INC.
    Inventor: Nathan Cohen
  • Publication number: 20170033448
    Abstract: Antennas, antenna systems, and communications devices are described that provide an antenna utilizing a fractal and/or self-similar conductive element that is novel and inventive in that its small in size and exhibits multiple-band or wideband frequency coverage which allows a miniature communications device incorporating the antenna to operate (e.g., function) with wide-band capabilities in close-proximity to a user's body and in form factor suitable for wearing by the user. As noted above, previous size and performance limitations of prior art antennas/devices were poor and made those devices either of limited utility or inoperable.
    Type: Application
    Filed: July 27, 2016
    Publication date: February 2, 2017
    Inventor: Nathan COHEN
  • Publication number: 20170023336
    Abstract: Systems and methods for drone mitigation, or the deterrence of aerial drones from flying in an given area, are described. The systems and methods take advantage of the fact that destabilization of a drone can be accomplished by externally changing the performance of one or more of its propeller driven systems. In doing so, the drone is incapable of maintaining stability in flight, thereby causing the remote controlled pilot to force a retreat, or risk and result in a crash of the drone. Embodiments utilizing sonic energy and liquids are described.
    Type: Application
    Filed: July 25, 2016
    Publication date: January 26, 2017
    Inventors: Nathan Cohen, Alexander Shelman-Cohen
  • Publication number: 20170003086
    Abstract: Systems according to the present disclosure provide one or more surfaces that function as heat or power radiating surfaces for which at least a portion of the radiating surface includes or is composed of “fractal cells” placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges.
    Type: Application
    Filed: July 5, 2016
    Publication date: January 5, 2017
    Inventor: Nathan Cohen
  • Patent number: 9482474
    Abstract: Systems according to the present disclosure provide one or more surfaces that function as heat or power radiating surfaces for which at least a portion of the radiating surface includes or is composed of “fractal cells” placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: November 1, 2016
    Assignee: Fractal Antenna Systems, Inc.
    Inventor: Nathan Cohen
  • Publication number: 20150314526
    Abstract: Method and apparatus for making antennas and antenna components suitable for wideband transmission and reception are disclosed. Material accretion devices or apparatus such as a 3D printer can be used to form the antennas and antenna components. The antenna and antenna components can include folded and/or self-similar features.
    Type: Application
    Filed: February 23, 2015
    Publication date: November 5, 2015
    Inventor: Nathan Cohen
  • Publication number: 20150311535
    Abstract: An aspect of the subject technology/invention of the present disclosure includes electrode structures or elements/components that have (e.g., present) fractal and/or self-complementary shapes or structures, e.g., on a surface. Such shapes or structures can be pre-existing. The electrodes can be made of any suitable material. The electrodes may function or operate or be used as a “seed” structure to incorporate or receive a material or materials useful for lattice assisted nuclear reactions and/or cold fusion processes.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 29, 2015
    Inventor: Nathan Cohen
  • Patent number: 9166302
    Abstract: Arrangement of resonators in an aperiodic configurations are described, which can be used for electromagnetic cloaking of objects. The overall assembly of resonators, as structures, do not all repeat periodically and at least some of the resonators are spaced such that their phase centers are separated by more than a wavelength. The arrangements can include resonators of several different sizes and/or geometries arranged so that each size or geometry corresponds to a moderate or high “Q” response that resonates within a specific frequency range, and that arrangement within that specific grouping of akin elements is periodic in the overall structure. The relative spacing and arrangement of groupings can be defined by self similarity and origin symmetry. Fractal based scatters are described. Further described are bondary condition layer structures that can activate and deactive cloaking/lensing structures.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: October 20, 2015
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Obinna Okoro, Phillip Salkind
  • Patent number: 9134465
    Abstract: Systems according to the present disclosure provide one or more surfaces or structures that function as power transferring surfaces or structures (deflective shields) for which at least a portion of which includes or is composed of “fractal cells” placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near or similar replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The surfaces and/or structures can also provide cloaking of objects inside the shields.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: September 15, 2015
    Assignee: Fractal Antenna Systems, Inc.
    Inventor: Nathan Cohen
  • Publication number: 20150255861
    Abstract: Aspect of the present disclosure are directed to methods and apparatus producing enhanced radiation characteristics, e.g., wideband behavior, in or for antennas and related components by providing concentric sleeves, with air or dielectric material as a spacer, where the sleeves include one or more conductive layers, at least a portion of which includes fractal resonators closely spaced, in terms of wavelength. A further aspect of the present disclosure is directed to surfaces that include dual-use or multiple-use apertures. Such aperture engine surfaces can include a top (or first) layer of antenna arrays, a middle (or second) layer of a metal-fractal backplane player, and a third (or bottom) layer for solar cell or solar oriented power collection.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 10, 2015
    Inventors: Nathan Cohen, Michael Chin
  • Patent number: 9035849
    Abstract: Aspect of the present disclosure are directed to methods and apparatus producing enhanced radiation characteristics, e.g., wideband behavior, in or for antennas and related components by providing concentric sleeves, with air or dielectric material as a spacer, where the sleeves include one or more conductive layers, at least a portion of which includes fractal resonators closely spaced, in terms of wavelength. A further aspect of the present disclosure is directed to surfaces that include dual-use or multiple-use apertures. Such aperture engine surfaces can include a top (or first) layer of antenna arrays, a middle (or second) layer of a metal-fractal backplane player, and a third (or bottom) layer for solar cell or solar oriented power collection.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: May 19, 2015
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Michael Chin
  • Publication number: 20150130563
    Abstract: Arrangement of resonators in an aperiodic configurations are described, which can be used for electromagnetic cloaking of objects. The overall assembly of resonators, as structures, do not all repeat periodically and at least some of the resonators are spaced such that their phase centers are separated by more than a wavelength. The arrangements can include resonators of several different sizes and/or geometries arranged so that each size or geometry corresponds to a moderate or high “Q” response that resonates within a specific frequency range, and that arrangement within that specific grouping of akin elements is periodic in the overall structure. The relative spacing and arrangement of groupings can be defined by self similarity and origin symmetry.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventor: Nathan Cohen
  • Patent number: 8937579
    Abstract: Arrangement of resonators in an aperiodic configurations are described, which can be used for electromagnetic cloaking of objects. The overall assembly of resonators, as structures, do not all repeat periodically and at least some of the resonators are spaced such that their phase centers are separated by more than a wavelength. The arrangements can include resonators of several different sizes and/or geometries arranged so that each size or geometry corresponds to a moderate or high “Q” response that resonates within a specific frequency range, and that arrangement within that specific grouping of akin elements is periodic in the overall structure. The relative spacing and arrangement of groupings can be defined by self similarity and origin symmetry.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: January 20, 2015
    Assignee: Fractal Antenna Systems, Inc.
    Inventor: Nathan Cohen