Patents by Inventor Nathan D. Hould

Nathan D. Hould has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180244591
    Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 30, 2018
    Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
  • Patent number: 10059642
    Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: August 28, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
  • Patent number: 9981888
    Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: May 29, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
  • Publication number: 20170369397
    Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.
    Type: Application
    Filed: June 23, 2016
    Publication date: December 28, 2017
    Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami