Patents by Inventor Nathan Dowlin

Nathan Dowlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10153894
    Abstract: The techniques and/or systems described herein are directed to improvements in homomorphic encryption to improve processing speed and storage requirements. For example, the techniques and/or systems can be used on a client device to encode data to be sent to a remote server, to be operated on while maintaining confidentiality of data. For example, data including a real number can be encoded as a polynomial, with the fractional part of the real number encoded as high-order coefficients in the polynomial. Further, real numbers can be approximated and encoded in a polynomial using a fractional base, and/or the encoding can include slot encoding. Thus, the optimized encodings disclosed herein provide an optimized homomorphic encryption scheme.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: December 11, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Kim Laine, Nathan Dowlin, Ran Gilad-Bachrach, Michael Naehrig, John Wernsing, Kristin E. Lauter
  • Patent number: 10075289
    Abstract: The techniques and/or systems described herein are directed to improvements in homomorphic encryption to improve processing speed and storage requirements. For example, the techniques and/or systems can be used on a client device to encode data to be sent to a remote server, to be operated on while maintaining confidentiality of data. The encoding scheme can be optimized by automatically selecting one or more parameters using an error growth simulator based on an actual program that operates on the encoded data. For example, the simulator can be used iteratively to determine an optimized parameter set which allows for improved homomorphic operations while maintaining security and confidentiality of a user's data.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: September 11, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Kim Laine, Nathan Dowlin, Ran Gilad-Bachrach, Michael Naehrig, John Wernsing, Kristin E. Lauter
  • Publication number: 20170134156
    Abstract: The techniques and/or systems described herein are directed to improvements in homomorphic encryption to improve processing speed and storage requirements. For example, the techniques and/or systems can be used on a client device to encode data to be sent to a remote server, to be operated on while maintaining confidentiality of data. The encoding scheme can be optimized by automatically selecting one or more parameters using an error growth simulator based on an actual program that operates on the encoded data. For example, the simulator can be used iteratively to determine an optimized parameter set which allows for improved homomorphic operations while maintaining security and confidentiality of a user's data.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 11, 2017
    Inventors: Kim Laine, Nathan Dowlin, Ran Gilad-Bachrach, Michael Naehrig, John Wernsing, Kristin E. Lauter
  • Publication number: 20170134157
    Abstract: The techniques and/or systems described herein are directed to improvements in homomorphic encryption to improve processing speed and storage requirements. For example, the techniques and/or systems can be used on a client device to encode data to be sent to a remote server, to be operated on while maintaining confidentiality of data. For example, data including a real number can be encoded as a polynomial, with the fractional part of the real number encoded as high-order coefficients in the polynomial. Further, real numbers can be approximated and encoded in a polynomial using a fractional base, and/or the encoding can include slot encoding. Thus, the optimized encodings disclosed herein provide an optimized homomorphic encryption scheme.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 11, 2017
    Inventors: Kim Laine, Nathan Dowlin, Ran Gilad-Bachrach, Michael Naehrig, John Wernsing, Kristin E. Lauter