Patents by Inventor Nathan Draney

Nathan Draney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060237822
    Abstract: A semiconductor wafer having a high degree of thinness and exhibiting an enhanced strength state. A layer of tenacious reinforcement material is disposed over a back side of the wafer while in a rough state from backgrinding without prior, conventional polishing or plasma etching of the back side. The thin layer or film of reinforcement material fills grooves, fractures and scratches in the back side of the wafer, enhance the rigidity of the wafer and provide a planar, smooth, back side surface layer. The reinforcement material counteracts internal stresses of the wafer tending to warp, crack and propagate lattice defects in the wafer. The reinforcement material may also be configured to act as a die attach adhesive, may provide an ionic barrier, and may remain as part of the packaging for semiconductor dice singulated from the wafer.
    Type: Application
    Filed: June 6, 2006
    Publication date: October 26, 2006
    Inventors: James Derderian, Nathan Draney
  • Publication number: 20050095812
    Abstract: A semiconductor wafer having a high degree of thinness and exhibiting an enhanced strength state. A layer of tenacious reinforcement material is disposed over a back side of the wafer while in a rough state from backgrinding without prior, conventional polishing or plasma etching of the back side. The thin layer or film of reinforcement material fills grooves, fractures and scratches in the back side of the wafer, enhance the rigidity of the wafer and provide a planar, smooth, back side surface layer. The reinforcement material counteracts internal stresses of the wafer tending to warp, crack and propagate lattice defects in the wafer. The reinforcement material may also be configured to act as a die attach adhesive, may provide an ionic barrier, and may remain as part of the packaging for semiconductor dice singulated from the wafer.
    Type: Application
    Filed: November 4, 2004
    Publication date: May 5, 2005
    Inventors: James Derderian, Nathan Draney
  • Publication number: 20050090107
    Abstract: A method and intermediate structure for improving the thinning and planarity of a wafer back side utilizing planarization material applied to the back side prior to at least one portion of the thinning operation and which is subsequently removed concurrently with the wafer material by one or more suitable thinning or planarization techniques. The planarization material may be applied as a thin layer or film of a hardenable material to the rough, bare back side of a wafer to produce a planar surface when hardened. The planarization material is selected to exhibit a material removal rate approximating the removal rate of the wafer material for a given removal technique such as etching, mechanical abrasion or chemical-mechanical planarization (CMP). This approach to wafer thinning and planarization results in improved process control in the form of uniform material removal rates, reduction in wafer warpage, final surface smoothness and planarity, and even distribution of residual stresses.
    Type: Application
    Filed: November 1, 2004
    Publication date: April 28, 2005
    Inventors: Nathan Draney, James Derderian
  • Publication number: 20050085050
    Abstract: A method and intermediate structure for improving the thinning and planarity of a wafer back side utilizing planarization material applied to the back side prior to at least one portion of the thinning operation and which is subsequently removed concurrently with the wafer material by one or more suitable thinning or planarization techniques. The planarization material may be applied as a thin layer or film of a hardenable material to the rough, bare back side of a wafer to produce a planar surface when hardened. The planarization material is selected to exhibit a material removal rate approximating the removal rate of the wafer material for a given removal technique such as etching, mechanical abrasion or chemical-mechanical planarization (CMP). This approach to wafer thinning and planarization results in improved process control in the form of uniform material removal rates, reduction in wafer warpage, final surface smoothness and planarity, and even distribution of residual stresses.
    Type: Application
    Filed: October 21, 2003
    Publication date: April 21, 2005
    Inventors: Nathan Draney, James Derderian
  • Publication number: 20050085008
    Abstract: A semiconductor wafer having a high degree of thinness and exhibiting an enhanced strength state. A layer of tenacious reinforcement material is disposed over a back side of the wafer while in a rough state from backgrinding, without prior, conventional polishing or plasma etching of the back side. The thin layer or film of reinforcement material fills grooves, fractures and scratches in the back side of the wafer, enhance the rigidity of the wafer and provide a planar, smooth, back side surface layer. The reinforcement material counteracts internal stresses of the wafer tending to warp, crack and propagate lattice defects in the wafer. The reinforcement material may also be configured to act as a die attach adhesive, may provide an ionic barrier, and may remain as part of the packaging for semiconductor dice singulated from the wafer.
    Type: Application
    Filed: October 21, 2003
    Publication date: April 21, 2005
    Inventors: James Derderian, Nathan Draney