Patents by Inventor Nathan E. Low

Nathan E. Low has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10220919
    Abstract: A water-propelled or water-powered unmanned aerial vehicle including a base configured to carry a payload, and at least one nozzle attached thereto. The at least one nozzle is configured to selectively receive pressurized fluid from a source located remotely from the vehicle. The vehicle includes a control system configured to alter or otherwise selectively dictate the flow of fluid through the at least one nozzle and/or the orientation of the at least one nozzle with respect to the base in response to a received control signal for providing controlled unmanned vehicle flight.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: March 5, 2019
    Assignee: Lockheed Martin Corporation
    Inventors: Nathan E. Low, Peter J. Demas
  • Publication number: 20180022423
    Abstract: A water-propelled or water-powered unmanned aerial vehicle including a base configured to carry a payload, and at least one nozzle attached thereto. The at least one nozzle is configured to selectively receive pressurized fluid from a source located remotely from the vehicle. The vehicle includes a control system configured to alter or otherwise selectively dictate the flow of fluid through the at least one nozzle and/or the orientation of the at least one nozzle with respect to the base in response to a received control signal for providing controlled unmanned vehicle flight.
    Type: Application
    Filed: September 1, 2017
    Publication date: January 25, 2018
    Inventors: Nathan E. Low, Peter J. Demas
  • Patent number: 9751597
    Abstract: A water-propelled or water-powered unmanned aerial vehicle including a base configured to carry a payload, and at least one nozzle attached thereto. The at least one nozzle is configured to selectively receive pressurized fluid from a source located remotely from the vehicle. The vehicle includes a control system configured to alter or otherwise selectively dictate the flow of fluid through the at least one nozzle and/or the orientation of the at least one nozzle with respect to the base in response to a received control signal for providing controlled unmanned vehicle flight.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: September 5, 2017
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Nathan E. Low, Peter J. Demas
  • Patent number: 9071271
    Abstract: A digital radio frequency memory (DRFM) comprises a plurality of time interleaved analog to digital converters (ADCs) in cooperation with a plurality of time interleaved digital to analog converters (DACs) to provide an effective sampling rate which may be greater than the clock rate of the system. A higher sampling rate at the ADC increases instantaneous bandwidth, while a higher sampling rate at the DAC improves spectral purity. The ADCs and DACs are time interleaved by supplying a clock signal to each ADC/DAC which is skewed with respect to the previous and subsequent skewed signal. In order to process the higher effective sampling rate, a pre-computation of DAC values for each high rate sample is performed by an SDAC algorithm that pipelines the calculations of the processed sample values provided to the DAC. A DAC bias correction is provided to adjust for drift in the DACs.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: June 30, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Nathan E. Low, Shawn Walters
  • Patent number: 8659453
    Abstract: A digital radio frequency memory (DRFM) comprises a plurality of time interleaved analog to digital converters (ADCs) in cooperation with a plurality of time interleaved digital to analog converters (DACs) to provide an effective sampling rate which may be greater than the clock rate of the system. A higher sampling rate at the ADC increases instantaneous bandwidth, while a higher sampling rate at the DAC improves spectral purity. The ADCs and DACs are time interleaved by supplying a clock signal to each ADC/DAC which is skewed with respect to the previous and subsequent skewed signal. In order to process the higher effective sampling rate, a pre-computation of DAC values for each high rate sample is performed by an SDAC algorithm that pipelines the calculations of the processed sample values provided to the DAC. A DAC bias correction is provided to adjust for drift in the DACs.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 25, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Nathan E. Low, Shawn Walters
  • Patent number: 7982654
    Abstract: A smart signal jammer is disclosed that receives a description of an unwanted signal or signals to be jammed, and transmits one or more jamming signals in one or more temporal transmission patterns of pulses that jam the unwanted signal or signals. A smart jammer according to the present invention can use available transmitters efficiently to transmit jamming pulses in a manner that maximizes jamming effectiveness. A smart jammer according to the present invention comprises a jamming signal calculator that calculates the parameters of the jamming signals to be transmitted. The calculations are based on inequalities that are satisfied by an efficient jamming signal.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: July 19, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Nathan E. Low
  • Publication number: 20100302087
    Abstract: A smart signal jammer is disclosed that receives a description of an unwanted signal or signals to be jammed, and transmits one or more jamming signals in one or more temporal transmission patterns of pulses that jam the unwanted signal or signals. This is in contrast to basic jammers in the prior art, which typically receive a description of a signal or signals to be transmitted. A smart jammer according to the present invention can improve the efficiency with which available transmitters are used to transmit jamming pulses, thus reducing the number of needed transmitters, compared to a prior-art jammer. A smart jammer according to the present invention comprises a jamming signal calculator that calculates the parameters of the jamming signals to be transmitted. The calculations are based on inequalities that are satisfied by an efficient jamming signal.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventor: Nathan E. Low