Patents by Inventor Nathan Ingle Landy

Nathan Ingle Landy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190137601
    Abstract: An embodiment of a radar subsystem includes at least one antenna and a control circuit. The at least one antenna is configured to radiate at least one first transmit beam and to form at least one first receive beam. And the control circuit is configured to steer the at least one first transmit beam and the at least one first receive beam over a first field of regard during a first time period, and to steer the at least one first transmit beam and the at least one first receive beam over a second field of regard during a second time period.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 9, 2019
    Applicant: Echodyne Corp
    Inventors: Tom Driscoll, John Desmond Hunt, Robert Tilman Worl, Muhammad Rameez Chatni, Aanand Esterberg, Kerem Karadayi, Christopher L. Lambrecht, Nathan Ingle Landy, Skyler Martens, Dominic Chun Kit Wu
  • Publication number: 20190115651
    Abstract: According to an embodiment, an antenna includes a conductive antenna element, a voltage-bias conductor, and a polarization-compensation conductor. The conductive antenna element is configured to radiate a first signal having a first polarization, and the voltage-bias conductor is coupled to a side of the antenna element and is configured to radiate a second signal having a second polarization that is different from the first polarization. And the polarization-compensating conductor is coupled to an opposite side of the antenna element and is configured to radiate third a signal having a third polarization that is approximately the same as the second polarization and that destructively interferes with the second signal. Such an antenna can be configured to reduce cross-polarization of the signals that its antenna elements radiate.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 18, 2019
    Applicant: Echodyne Corp
    Inventors: Tom Driscoll, Nathan Ingle Landy, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Patent number: 10236574
    Abstract: Described embodiments include an antenna and a method. In an embodiment, the antenna includes a holographic aperture having a surface including a plurality of individual electromagnetic wave scattering elements distributed thereon with a periodic inter-element spacing equal to or less than one-half of a free space wavelength of an operating frequency of the antenna. The aperture is configured to define at least two selectable complex radiofrequency electromagnetic fields on the surface with tangential wavenumbers up to 2? over the aperture element spacing (k_apt=2?/a). In an embodiment, the holographic aperture includes an amplitude and phase modulation holographic aperture.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: March 19, 2019
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 10224587
    Abstract: The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: March 5, 2019
    Assignee: Elwha LLC
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, David R. Smith, Yaroslav A. Urzhumov
  • Publication number: 20180159245
    Abstract: Surface scattering antennas with lumped elements provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the surface scattering antenna is a multi-layer printed circuit board assembly, and the lumped elements are surface-mount components placed on an upper surface of the printed circuit board assembly. In some approaches, the scattering elements are adjusted by adjusting bias voltages for the lumped elements. In some approaches, the lumped elements include diodes or transistors.
    Type: Application
    Filed: November 29, 2017
    Publication date: June 7, 2018
    Inventors: Pai-Yen CHEN, Tom DRISCOLL, Siamak EBADI, John Desmond HUNT, Nathan Ingle LANDY, Melroy MACHADO, Jay Howard MCCANDLESS, Milton PERQUE, JR., David R. SMITH, Yaroslav A. URZHUMOV
  • Publication number: 20180156891
    Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 7, 2018
    Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
  • Publication number: 20180131060
    Abstract: The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
    Type: Application
    Filed: July 17, 2017
    Publication date: May 10, 2018
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, David R. Smith, Yaroslav A. Urzhumov
  • Publication number: 20180108992
    Abstract: Modulation patterns for surface scattering antennas provide desired antenna pattern attributes such as reduced side lobes and reduced grating lobes.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 19, 2018
    Inventors: PAI-YEN CHEN, TOM DRISCOLL, SIAMAK EBADI, JOHN DESMOND HUNT, NATHAN INGLE LANDY, MELROY MACHADO, MILTON PERQUE, JR., DAVID R. SMITH, YAROSLAV A. URZHUMOV
  • Patent number: 9935375
    Abstract: A surface scattering reflector antenna includes a plurality of adjustable scattering elements and is configured to produce a reflected beam pattern according to the configuration of the adjustable scattering elements.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: April 3, 2018
    Inventors: Jeffrey A. Bowers, David Jones Brady, Tom Driscoll, John Desmond Hunt, Roderick A. Hyde, Nathan Ingle Landy, Guy Shlomo Lipworth, Alexander Mrozack, David R. Smith, Clarence T. Tegreene
  • Publication number: 20180054004
    Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.
    Type: Application
    Filed: August 18, 2016
    Publication date: February 22, 2018
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen
  • Publication number: 20180026365
    Abstract: An embodiment of an antenna comprises an array of antenna elements arranged in groups of antenna elements adjustably coupled to respective reference waves. A multiplicity of patterns of antenna coupling settings are defined, each of which gives rise to a main lobe which points the antenna in a particular direction, each pattern also giving rise to respective side lobes. First and second such patterns may point the antenna in the same direction but with non-identical side lobes. In this way the clutter level from the side lobes relative to the main lobe is much smaller than would be the case if one of the patterns were employed both for transmitting and receiving. Alternatively, the first and second patterns may be used in quick succession both for transmitting, or used in quick succession both for receiving. The antenna may also switch rapidly between patterns where the main lobe points in a different direction in each pattern, allowing dithering of the beam or rapid switching between scanning and tracking.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 25, 2018
    Inventors: Tom Driscoll, William F. Graves, Jr., John Desmond Hunt, Nathan Ingle Landy, Christopher L. Lambrecht, Milton Perque, Robert Tilman Worl
  • Patent number: 9871291
    Abstract: Described embodiments include a system, method, and apparatus. A system includes an antenna comprising a sub-Nyquist holographic aperture configured to define selectable arbitrary complex radiofrequency electromagnetic fields on a surface of the antenna. A path analysis engine tests power transmission pathways from the antenna to a target device located in an environment within a space radiateable by the antenna. The environment includes a human being. An optimization circuit selects responsive to the tested power transmission pathways a power transmission regime. The regime includes an electromagnetic radiation pattern shaped to transfer radiofrequency electromagnetic power from the antenna to the target device without exceeding a radiation exposure limit for humans. A gain definition circuit selects a complex radiofrequency electromagnetic field implementing the selected power transmission regime from the at least two selectable, complex radiofrequency electromagnetic fields.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: January 16, 2018
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9853361
    Abstract: Surface scattering antennas with lumped elements provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the surface scattering antenna is a multi-layer printed circuit board assembly, and the lumped elements are surface-mount components placed on an upper surface of the printed circuit board assembly. In some approaches, the scattering elements are adjusted by adjusting bias voltages for the lumped elements. In some approaches, the lumped elements include diodes or transistors.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: December 26, 2017
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Jay McCandless, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9843103
    Abstract: An array of scattering and/or reflector antennas are configured to produce a series of beam patterns, where in some embodiments the scattering antenna and/or the reflector antenna includes complementary metamaterial elements. In some embodiments circuitry may be configured to set a series of conditions corresponding to the array to produce the series of beam patterns, and to produce an image of an object that is illuminated by the series of beam patterns.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: December 12, 2017
    Inventors: Jeffrey A. Bowers, David Jones Brady, Tom Driscoll, John Desmond Hunt, Roderick A. Hyde, Nathan Ingle Landy, Guy Shlomo Lipworth, Alexander Mrozack, David R. Smith, Clarence T. Tegreene
  • Patent number: 9825358
    Abstract: Described embodiments include a system, method, and apparatus. The system includes an antenna comprising a sub-Nyquist holographic aperture configured to define selectable arbitrary complex radiofrequency electromagnetic fields on a surface of the antenna. A mapping engine models an environment within a space radiateable by the antenna. The environment includes a target device and a human being. An optimization circuit selects responsive to the model of the environment a power transmission regime. The power transmission regime includes radiation pattern shaped to wirelessly transfer electromagnetic power from the antenna to the target device without exceeding a radiation exposure limit for humans. A gain definition circuit selects a complex radiofrequency electromagnetic field implementing the selected power transmission regime from the at least two selectable arbitrary complex radiofrequency electromagnetic fields.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: November 21, 2017
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9812779
    Abstract: Modulation patterns for surface scattering antennas provide desired antenna pattern attributes such as reduced side lobes and reduced grating lobes.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: November 7, 2017
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9806415
    Abstract: Modulation patterns for surface scattering antennas provide desired antenna pattern attributes such as reduced side lobes and reduced grating lobes.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 31, 2017
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9806416
    Abstract: Modulation patterns for surface scattering antennas provide desired antenna pattern attributes such as reduced side lobes and reduced grating lobes.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 31, 2017
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9806414
    Abstract: Modulation patterns for surface scattering antennas provide desired antenna pattern attributes such as reduced side lobes and reduced grating lobes.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 31, 2017
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9711852
    Abstract: Modulation patterns for surface scattering antennas provide desired antenna pattern attributes such as reduced side lobes and reduced grating lobes.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: July 18, 2017
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov