Patents by Inventor Nathan J. Alves

Nathan J. Alves has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220218639
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Application
    Filed: November 18, 2021
    Publication date: July 14, 2022
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam
  • Publication number: 20220218839
    Abstract: A method of crosslinking a hetero-bifunctional photo crosslinking compound to an immunoglobulin having at least one heterocyclic photo reactive group and at least one non-photo reactive group where the non-photo reactive group is coupled to an effector molecule and the photo reactive group is coupled to the nucleotide binding site of an immunoglobulin. Alternatively, the photo crosslinker contains an orthogonal reactive group such as a thiol, which can be coupled to an effector molecule or functionalized ligand.
    Type: Application
    Filed: September 2, 2021
    Publication date: July 14, 2022
    Applicant: University of Notre Dame du Lac
    Inventors: Zihni Basar BILGICER, Nathan J. ALVES
  • Patent number: 11207282
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: December 28, 2021
    Assignee: Indiana University Research and Technology Corporation
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam
  • Patent number: 11116848
    Abstract: A method of crosslinking a hetero-bifunctional photo crosslinking compound to an immunoglobulin having at least one heterocyclic photo reactive group and at least one non-photo reactive group where the non-photo reactive group is coupled to an effector molecule and the photo reactive group is coupled to the nucleotide binding site of an immunoglobulin. Alternatively, the photo crosslinker contains an orthogonal reactive group such as a thiol, which can be coupled to an effector molecule or functionalized ligand.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: September 14, 2021
    Assignee: University of Notre Dame du Lac
    Inventors: Zihni Basar Bilgicer, Nathan J. Alves
  • Publication number: 20200261386
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 20, 2020
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam
  • Patent number: 10583104
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: March 10, 2020
    Assignee: Indiana University Research and Technology Corporation
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam
  • Publication number: 20190328896
    Abstract: A method of crosslinking a hetero-bifunctional photo crosslinking compound to an immunoglobulin having at least one heterocyclic photo reactive group and at least one non-photo reactive group where the non-photo reactive group is coupled to an effector molecule and the photo reactive group is coupled to the nucleotide binding site of an immunoglobulin. Alternatively, the photo crosslinker contains an orthogonal reactive group such as a thiol, which can be coupled to an effector molecule or functionalized ligand.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 31, 2019
    Applicant: University of Notre Dame du Lac
    Inventors: Zihni Basar BILGICER, Nathan J. ALVES
  • Patent number: 10342846
    Abstract: The invention provides pharmaceutical compositions and method of using the compositions, wherein the compositions comprise liposomes or micelles that contain one or more targeting peptides and/or anticancer drugs. In various embodiments, the components of the liposomes can include a) a phospholipid and optionally a lipid that is not a phospholipid; b) a pegylated lipid; c) a peptide-ethylene glycol (EG)-lipid conjugate wherein the peptide is a targeting ligand, and d) one or more drug-conjugated lipid, encapsulated drugs, or a combination thereof. The peptide-EG-lipid conjugate can be, for example, a compound of Formula (I) or Formula (II). The ethylene glycol (EG) segments of the peptide-EG-lipid conjugate can be, for example, EG6 to about EG36; and the EG segment can be conjugated to one or more lysine moieties.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: July 9, 2019
    Assignee: University of Notre Dame du Lac
    Inventors: Zihni Basar Bilgicer, Jonathan Ashley, Tanyel Kiziltepe Bilgicer, Jared Stefanick, Nathan J. Alves
  • Publication number: 20180177810
    Abstract: Embodiments provide systems, methods, and compositions for nanoparticle-based drug delivery to target cells or tissues. A drug delivery system may include a nanoparticle with a targeting component and a therapeutic component. The nanoparticle may have a predetermined number or valence of targeting molecules for multivalent interaction with a target cell or tissue. Binding of the targeting molecules to the target cell may result in receptor-mediated uptake of the nanoparticle by the target cell. The therapeutic component may be subsequently released within an endocytic vesicle of the target cell. Nanoparticle-based drug delivery systems as described herein may provide improved efficacy and/or reduced toxicity.
    Type: Application
    Filed: January 23, 2018
    Publication date: June 28, 2018
    Applicant: University of Notre Dame du Lac
    Inventors: Zihni Basar BILGICER, Tanyel KIZILTEPE BILGICER, Jonathan Darryl ASHLEY, Jared Francis STEFANICK, Nathan J. ALVES, Michael W. HANDLOGTEN
  • Patent number: 9872870
    Abstract: Embodiments provide systems, methods, and compositions for nanoparticle-based drug delivery to target cells or tissues. A drug delivery system may include a nanoparticle with a targeting component and a therapeutic component. The nanoparticle may have a predetermined number or valence of targeting molecules for multivalent interaction with a target cell or tissue. Binding of the targeting molecules to the target cell may result in receptor-mediated uptake of the nanoparticle by the target cell. The therapeutic component may be subsequently released within an endocytic vesicle of the target cell. Nanoparticle-based drug delivery systems as described herein may provide improved efficacy and/or reduced toxicity.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: January 23, 2018
    Assignee: University of Notre Dame du Lac
    Inventors: Zihni Basar Bilgicer, Tanyel Kiziltepe Bilgicer, Jonathan Darryl Ashley, Jared Stefanick, Nathan J. Alves, Michael W. Handlogten
  • Publication number: 20170189362
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Application
    Filed: August 4, 2015
    Publication date: July 6, 2017
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam
  • Publication number: 20160038607
    Abstract: The invention provides pharmaceutical compositions and method of using the compositions, wherein the compositions comprise liposomes or micelles that contain one or more targeting peptides and/or anticancer drugs. In various embodiments, the components of the liposomes can include a) a phospholipid and optionally a lipid that is not a phospholipid; b) a pegylated lipid; c) a peptide-ethylene glycol (EG)-lipid conjugate wherein the peptide is a targeting ligand, and d) one or more drug-conjugated lipid, encapsulated drugs, or a combination thereof. The peptide-EG-lipid conjugate can be, for example, a compound of Formula (I) or Formula (II). The ethylene glycol (EG) segments of the peptide-EG-lipid conjugate can be, for example, EG6 to about EG36; and the EG segment can be conjugated to one or more lysine moieties.
    Type: Application
    Filed: February 4, 2014
    Publication date: February 11, 2016
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Zihni Basar BILGICER, Jonathan ASHLEY, Tanyel KIZILTEPE-BILGICER, Jared STEFANICK, Nathan J. ALVES
  • Publication number: 20140287049
    Abstract: Embodiments provide systems, methods, and compositions for nanoparticle-based drug delivery to target cells or tissues. A drug delivery system may include a nanoparticle with a targeting component and a therapeutic component. The nanoparticle may have a predetermined number or valence of targeting molecules for multivalent interaction with a target cell or tissue. Binding of the targeting molecules to the target cell may result in receptor-mediated uptake of the nanoparticle by the target cell. The therapeutic component may be subsequently released within an endocytic vesicle of the target cell. Nanoparticle-based drug delivery systems as described herein may provide improved efficacy and/or reduced toxicity.
    Type: Application
    Filed: November 5, 2012
    Publication date: September 25, 2014
    Inventors: Zihni Basar Bilgicer, Tanyel Kiziltepe Bilgicer, Jonathan Darryl Ashley, Jared Stefanick, Nathan J. Alves, Michael W. Handlogten