Patents by Inventor Nathan P. Myhrvold

Nathan P. Myhrvold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11669785
    Abstract: Computationally implemented methods and systems that are designed for receiving one or more first directives that direct a transportation vehicle unit to transport a first end user; receiving, while the transportation vehicle unit is en route to or is transporting the first end user, one or more second directives that direct the transportation vehicle unit to transport a second end user while transporting the first end user, the transportation vehicle unit having been determined to be able to accommodate transport of the second end user while transporting the first end user; and verifying that compliance with the one or more second directives will not conflict with one or more obligations to transport the first end user by the transportation vehicle unit. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: June 6, 2023
    Assignee: UBER TECHNOLOGIES, INC.
    Inventors: Richard T. Lord, Robert W. Lord, Nathan P. Myhrvold, Clarence T. Tegreene, Jr.
  • Patent number: 11638676
    Abstract: Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: May 2, 2023
    Assignee: VENTRK, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20230044882
    Abstract: Computationally implemented methods and systems that are designed for receiving one or more first directives that direct a transportation vehicle unit to transport a first end user; receiving, while the transportation vehicle unit is en route to or is transporting the first end user, one or more second directives that direct the transportation vehicle unit to transport a second end user while transporting the first end user, the transportation vehicle unit having been determined to be able to accommodate transport of the second end user while transporting the first end user; and verifying that compliance with the one or more second directives will not conflict with one or more obligations to transport the first end user by the transportation vehicle unit. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
    Type: Application
    Filed: October 13, 2022
    Publication date: February 9, 2023
    Inventors: Richard T. LORD, Robert W. LORD, Nathan P. MYHRVOLD, Clarence T. TEGREENE
  • Publication number: 20220412748
    Abstract: Computationally implemented methods and systems that are designed for receiving a request for transporting one or more end users towards a destination location; providing a travel plan for facilitating the one or more end users to travel to the destination location from a starting location, the travel plan identifying at least two route legs including at least one transport route leg that calls for at least one transportation vehicle unit to transport the one or more end users over the transport route leg; and directing the at least one transportation vehicle unit to rendezvous with the one or more end users at a rendezvous location in order to transport the one or more end users over the transport route leg. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
    Type: Application
    Filed: September 7, 2022
    Publication date: December 29, 2022
    Inventors: Richard T. LORD, Robert W. LORD, Nathan P. MYHRVOLD, Clarence T. TEGREENE
  • Patent number: 11466993
    Abstract: Computationally implemented methods and systems that are designed for receiving a request for transporting one or more end users towards a destination location; providing a travel plan for facilitating the one or more end users to travel to the destination location from a starting location, the travel plan identifying at least two route legs including at least one transport route leg that calls for at least one transportation vehicle unit to transport the one or more end users over the transport route leg; and directing the at least one transportation vehicle unit to rendezvous with the one or more end users at a rendezvous location in order to transport the one or more end users over the transport route leg. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: October 11, 2022
    Assignee: UBER TECHNOLOGIES, INC.
    Inventors: Richard T. Lord, Robert W. Lord, Nathan P. Myhrvold, Clarence T. Tegreene
  • Patent number: 11364380
    Abstract: In an embodiment, a nerve stimulation system includes a headset and an earpiece which includes two or more ear-contacting elements, for example an ear canal insert, and a concha insert. Ear-contacting elements may be mounted onto an earpiece housing have projecting mounting structures, which provide mechanical and electrical connection between ear-contacting elements and housing through various materials and configurations. In an embodiment, a nerve stimulation system includes a neural stimulation subsystem including neural stimulation device control circuitry for use in combination with a personal computing device to control a neural stimulation device.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: June 21, 2022
    Assignee: Elwha LLC
    Inventors: Eleanor V. Goodall, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Mark A. Malamud, Stephen L. Malaska, Nathan P. Myhrvold, Tim F. Ramsey, Brittany Scheid, Katherine E. Sharadin, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 11361573
    Abstract: A system for tracking airborne organisms includes an imager, a backlight source (such as a retroreflective surface) in view of the imager, and a processor configured to analyze one or more images captured by the processor to identify a biological property of an organism.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: June 14, 2022
    Assignee: TOKITAE LLC
    Inventors: Roderick A. Hyde, Eric Johanson, Jordin T. Kare, Artyom Makagon, Emma Rae Mullen, Nathan P. Myhrvold, Thomas J. Nugent, Jr., Nathan John Pegram, Nels R. Peterson, Phillip Rutschman, Lowell L. Wood, Jr.
  • Patent number: 11294344
    Abstract: An apparatus, method, computer program product, and/or system are described that determine an event, actuate a cushioning element in response to the determining the event, the cushioning element including one or more tension-bearing members, and dissipate at least some of an energy associated with a collision based on deforming at least one of the tension-bearing members during the collision, the deforming including substantially inelastically stretching the at least one of the tension-bearing members. Other example embodiments are also provided relating to actuatable cushioning elements.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: April 5, 2022
    Assignee: Deep Science, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Cameron Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, John D. Rinaldo, Jr., Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20210365848
    Abstract: A computing system determines that a transportation vehicle is transporting a first end user to a first destination location. Based on a set of factors, the system determines that a driver of the transportation vehicle is able to travel to a rendezvous location to rendezvous with a second end user while the transportation vehicle is progressing to the first destination location along an original route. The system determines an alternate route for the transportation vehicle to travel to the rendezvous location that satisfies the set of factors, and directs the driver of the transportation vehicle to the rendezvous location to rendezvous with the second end user along the alternate route.
    Type: Application
    Filed: July 27, 2021
    Publication date: November 25, 2021
    Inventors: Richard T. LORD, Robert W. LORD, Nathan P. MYHRVOLD, Clarence T. TEGREENE
  • Patent number: 11100434
    Abstract: Computationally implemented methods, devices and systems that are designed for transmitting a request for one or more identities of a transportation vehicle unit for transporting a first end user; receiving the one or more identities of the transportation vehicle unit for transporting the first end user, the transportation vehicle unit currently en route to or is currently transporting a second end user and having been identified based, at least in part, on a determination that the transportation vehicle unit is able to accommodate transport of the first end user while transporting the second end user; and directing the identified transportation vehicle unit to rendezvous with the first end user in order to transport the first end user.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: August 24, 2021
    Assignee: UBER TECHNOLOGIES, INC.
    Inventors: Richard T. Lord, Robert W. Lord, Nathan P. Myhrvold, Clarence T. Tegreene
  • Publication number: 20210146042
    Abstract: Methods and related systems for modulating neural activity by repetitively blocking conduction in peripheral neural structures with chemical blocking agents are disclosed. Methods and systems for reversing effects of chemical blocking agents and/or for producing substantially permanent conduction block are also disclosed.
    Type: Application
    Filed: October 28, 2020
    Publication date: May 20, 2021
    Inventors: Ralph G. Dacey, JR., Gregory J. Della Rocca, Colin P. Derdeyn, Joshua L. Dowling, Eleanor V. Goodall, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Michael A. Smith, Lowell L. Wood, Victoria Y. H. Wood, Gregory J. Zipfel
  • Publication number: 20210018680
    Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 21, 2021
    Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K.Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR.
  • Patent number: 10875525
    Abstract: Techniques for ability enhancement are described. In some embodiments, devices and systems located in a transportation network share threat information with one another, in order to enhance a user's ability to operate or function in a transportation-related context. In one embodiment, a process in a vehicle receives threat information from a remote device, the threat information based on information about objects or conditions proximate to the remote device. The process then determines that the threat information is relevant to the safe operation of the vehicle. Then, the process modifies operation of the vehicle based on the threat information, such as by presenting a message to the operator of the vehicle and/or controlling the vehicle itself.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: December 29, 2020
    Assignee: Microsoft Technology Licensing LLC
    Inventors: Richard T. Lord, Robert W. Lord, Nathan P. Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, Muriel Y. Ishikawa, Victoria Y. H. Wood, Charles Whitmer, Paramvir Bahl, Douglas C. Burger, Ranveer Chandra, William H. Gates, III, Pablos Holman, Jordin T. Kare, Craig J. Mundie, Tim Paek, Desney S. Tan, Lin Zhong, Matthew G. Dyor
  • Publication number: 20200399398
    Abstract: Devices, compositions, and methods are described which provide a tubular nanostructure or a composite tubular nanostructure targeted to a lipid bilayer membrane. The tubular nanostructure includes a hydrophobic surface region flanked by two hydrophilic surface regions. The tubular nanostructure is configured to interact with a lipid bilayer membrane and form a pore in the lipid bilayer membrane. The tubular nanostructure may be targeted by including at least one ligand configured to bind to one or more cognates on the lipid bilayer membrane of a target cell.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 24, 2020
    Inventors: Mahalaxmi Gita Bangera, Ed Harlow, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Eric C. Leuthardt, Nathan P. Myhrvold, Dennis J. Rivet, Elizabeth A. Sweeney, Clarence T. Tegreene, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 10839965
    Abstract: A nuclear fission reactor, flow control assembly, methods therefor and a flow control assembly system. The flow control assembly is coupled to a nuclear fission module capable of producing a traveling burn wave at a location relative to the nuclear fission module. The flow control assembly controls flow of a fluid in response to the location relative to the nuclear fission module. The flow control assembly comprises a flow regulator subassembly configured to be operated according to an operating parameter associated with the nuclear fission module. In addition, the flow regulator subassembly is reconfigurable according to a predetermined input to the flow regulator subassembly. Moreover, the flow control assembly comprises a carriage subassembly coupled to the flow regulator subassembly for adjusting the flow regulator subassembly to vary fluid flow into the nuclear fission module.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: November 17, 2020
    Assignee: TERRAPOWER, LLC
    Inventors: Charles E. Ahlfeld, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Jon D. McWhirter, Nathan P. Myhrvold, Ashok Odedra, Clarence T. Tegreene, Thomas A. Weaver, Charles Whitmer, Victoria Y. H. Wood, Lowell L. Wood, Jr., George B. Zimmerman
  • Patent number: 10826335
    Abstract: Systems, methods, computer-readable storage mediums including computer-readable instructions and/or circuitry for control of transmission to a target device with communicating with one or more sensors in an ad-hoc sensor network may implement operations including, but not limited to: receiving electrical power via at least one structurally integrated electrically conductive element; and powering one or more sensing operations of one or more sensors via the electrical power.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: November 3, 2020
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Matthew G. Dyor, Peter N. Glaskowsky, Kimberly D. A. Hallman, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Michael F. Koenig, Richard T. Lord, Robert W Lord, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Desney S. Tan, Lowell L. Wood, Jr.
  • Patent number: 10825441
    Abstract: The present disclosure provides systems and methods associated with acoustic transmitters, receivers, and antennas. Specifically, the present disclosure provides a transducer system for transmitting and receiving acoustic energy according to a determined acoustic emission/reception pattern. In various embodiments, an acoustic transducer system may include an array of sub-wavelength transducer elements each configured with an electromagnetic resonance at one of a plurality of electromagnetic frequencies. Each sub-wavelength transducer element may generate an acoustic emission in response to the electromagnetic resonance. A beam-forming controller may cause electromagnetic energy to be transmitted at select electromagnetic frequencies to cause a select subset of the sub-wavelength transducer elements to generate acoustic emissions according to a selectable acoustic transmission pattern. A common port may facilitate electromagnetic communication with each of the sub-wavelength transducer elements.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: November 3, 2020
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, Paul Duesterhoft, Daniel Hawkins, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Clarence T. Tegreene, Lowell L. Wood, Jr., Michael A. Smith
  • Publication number: 20200339415
    Abstract: An apparatus includes a base having a first surface and an array of pillars. Each pillar of the array of pillars includes (i) a first end attached to the first surface of the base; (ii) a second end having an electric charge retention portion; (iii) a physical separation from adjacent pillars of the array of pillars; and (iv) an electrical conductor configured to electrically connect the electric charge retention portion with a bus structure. The bus structure is configured to addressably connect with the electrical conductor of each respective pillar of the array of pillars.
    Type: Application
    Filed: May 11, 2020
    Publication date: October 29, 2020
    Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K.Y. Jung, Guy Shlomo Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR.
  • Publication number: 20200316365
    Abstract: Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
    Type: Application
    Filed: February 10, 2020
    Publication date: October 8, 2020
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20200310376
    Abstract: In one embodiment, a particular state of a body is sensed. In response to the sensing, at least one action is taken to modulate a projected adverse interaction between the body or a portion thereof and at least one object in the environment of the body. An apparatus, methods and computer program product, and system are described that enable a first subset of actuatable cushioning elements for a first time period, enable a second subset of actuatable cushioning elements for a second time period, determine an event, and actuate, based on a time the event is determined, at least one of the first and the second subsets of actuatable cushioning elements to provide cushioning support for an object. Other example embodiments are also provided relating to actuatable cushioning elements.
    Type: Application
    Filed: November 1, 2019
    Publication date: October 1, 2020
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Cameron Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, John D. Rinaldo, JR., Lowell L. Wood, JR., Victoria Y.H. Wood