Patents by Inventor Nathanael Paul

Nathanael Paul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124406
    Abstract: Provided herein are compounds of Formula (I?), Formula (I?), Formula (I), Formula (II?), and Formula (II), and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, and prodrugs thereof. Also provided are methods, uses, and kits involving the disclosed compounds and pharmaceutical compositions thereof for treating and/or preventing diseases (e.g., proliferative diseases (e.g., cancers), inflammatory diseases (e.g., fibrosis), autoimmune diseases (e.g., sclerosis)) in a subject. Provided are methods of inhibiting the activity of a transcription factor (e.g., TEAD, such as TEAD1, TEAD2, TEAD3, TEAD4) and/or inhibiting the transcription of a gene (e.g., a gene controlled or regulated by a transcription factor (e.g., TEAD)) in a subject.
    Type: Application
    Filed: June 2, 2021
    Publication date: April 18, 2024
    Inventors: Nathanael S. Gray, Tinghu Zhang, Nicholas Paul Kwiatkowski, Mengyang Fan, Jianwei Che, Wenchao Lu
  • Patent number: 11932625
    Abstract: The present invention provides novel compounds of Formulae (I?) and (II), and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, prodrugs, and compositions thereof. Also provided are methods and kits involving the inventive compounds or compositions for treating and/or preventing proliferative diseases (e.g., cancers (e.g., leukemia, acute lymphoblastic leukemia, lymphoma, Burkitt's lymphoma, melanoma, multiple myeloma, breast cancer, Ewing's sarcoma, osteosarcoma, brain cancer, ovarian cancer, neuroblastoma, lung cancer, colorectal cancer), benign neoplasms, diseases associated with angiogenesis, inflammatory diseases, autoinflammatory diseases, and autoimmune diseases) in a subject. Treatment of a subject with a proliferative disease using a compound or composition of the invention may inhibit the aberrant activity of a kinase, such as a cyclin-dependent kinase (CDK) (e.g.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: March 19, 2024
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Nathanael S. Gray, Tinghu Zhang, Baishan Jiang, Nicholas Paul Kwiatkowski
  • Patent number: 11857611
    Abstract: The compositions and methods are described for generating an immune response to a Plasmodium antigen. The compositions and methods described herein relate to a modified vaccinia Ankara (MVA) vector encoding one or more viral antigens for generating a protective immune response to malaria by expressing the Plasmodium antigen in the subject to which the MVA vector is administered. The compositions and methods of the present invention are useful both prophylactically and therapeutically and may be used to prevent and/or treat malaria.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: January 2, 2024
    Assignee: Geovax, Inc.
    Inventors: Farshad Guirakhoo, Arban Domi, Nathanael Paul McCurley
  • Patent number: 11770863
    Abstract: Systems, devices, and methods are disclosed for wireless communication of analyte data. In this regard, in embodiments, a mobile includes a transceiver configured to transmit and receive wireless signals. The mobile device includes circuitry operatively coupled to the transceiver. The mobile device also includes a non-transitory computer-readable medium operatively coupled to the circuitry and storing instructions that, when executed, cause the mobile device to perform a number of operations. One such operation is to obtain a derivative of a first signal received via a first link. Another such operation is to obtain a derivative of a second signal received via a second link; and. Yet another such operation is to generate a selection for connection to an analyte sensor system, based on a comparison of the derivative of the first signal and the derivative of the second signal.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: September 26, 2023
    Assignee: Dexcom, Inc
    Inventors: Aditya Mandapaka, Douglas William Burnette, Hari Hampapuram, Francis William Pascual, James Stephen Amidei, Darin Edward Chum Dew, Apurv Ullas Kamath, Nathanael Paul, William A. Pender, Michael A. Ploof
  • Patent number: 11638750
    Abstract: The compositions and methods are described for generating an immune response to a flavivirus such as Zika virus. The compositions and methods described herein relate to a modified vaccinia Ankara (MVA) vector encoding one or more viral antigens for generating a protective immune response to a member of genus Flavivirus (such as a member of species Zika virus), in the subject to which the vector is administered. The compositions and methods of the present invention are useful both prophylactically and therapeutically and may be used to prevent and/or treat an infection caused by Flavivirus.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: May 2, 2023
    Assignee: Geovax, Inc.
    Inventors: Farshad Guirakhoo, Arban Domi, Nathanael Paul McCurley
  • Publication number: 20230089907
    Abstract: Systems, devices, and methods are disclosed for wireless communication of analyte data. In this regard, in embodiments, a mobile includes a transceiver configured to transmit and receive wireless signals. The mobile device includes circuitry operatively coupled to the transceiver. The mobile device also includes a non-transitory computer-readable medium operatively coupled to the circuitry and storing instructions that, when executed, cause the mobile device to perform a number of operations. One such operation is to obtain a derivative of a first signal received via a first link. Another such operation is to obtain a derivative of a second signal received via a second link; and. Yet another such operation is to generate a selection for connection to an analyte sensor system, based on a comparison of the derivative of the first signal and the derivative of the second signal.
    Type: Application
    Filed: November 1, 2022
    Publication date: March 23, 2023
    Inventors: Aditya MANDAPAKA, Douglas William BURNETTE, Hari HAMPAPURAM, Francis William PASCUAL, James Stephen AMIDEI, Darin Edward CHUM DEW, Apurv Ullas KAMATH, Nathanael PAUL, William A. PENDER, Michael A. PLOOF
  • Publication number: 20230040403
    Abstract: The compositions and methods are described for generating an immune response to an antigen. The compositions and methods described herein relate to a modified vaccinia Ankara (MVA) vector encoding one or more viral antigens as a fusion product with a viral glycoprotein and matrix protein for generating a protective immune response to a subject to which the vector is administered. The compositions and methods of the present invention are useful both prophylactically and therapeutically and may be used to prevent and/or treat diseases.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 9, 2023
    Applicant: GeoVax, Inc.
    Inventors: Harriet Robinson, Arban Domi, Michael Hellerstein, Farshad Guirakhoo, Nathanael Paul McCurley
  • Publication number: 20220313808
    Abstract: The compositions and methods are described for generating an immune response to a Plasmodium antigen. The compositions and methods described herein relate to a modified vaccinia Ankara (MVA) vector encoding one or more viral antigens for generating a protective immune response to malaria by expressing the Plasmodium antigen in the subject to which the MVA vector is administered. The compositions and methods of the present invention are useful both prophylactically and therapeutically and may be used to prevent and/or treat malaria.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 6, 2022
    Applicant: Geovax, Inc
    Inventors: Farshad Guirakhoo, Arban Domi, Nathanael Paul McCurley
  • Patent number: 11413341
    Abstract: The compositions and methods are described for generating an immune response to an antigen. The compositions and methods described herein relate to a modified vaccinia Ankara (MVA) vector encoding one or more viral antigens as a fusion product with a viral glycoprotein and matrix protein for generating a protective immune response to a subject to which the vector is administered. The compositions and methods of the present invention are useful both prophylactically and therapeutically and may be used to prevent and/or treat diseases.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: August 16, 2022
    Assignee: Geovax, Inc.
    Inventors: Harriet Robinson, Arban Domi, Michael Hellerstein, Farshad Guirakhoo, Nathanael Paul McCurley
  • Patent number: 11311612
    Abstract: The compositions and methods are described for generating an immune response to a Plasmodium antigen. The compositions and methods described herein relate to a modified vaccinia Ankara (MVA) vector encoding one or more viral antigens for generating a protective immune response to malaria by expressing the Plasmodium antigen in the subject to which the MVA vector is administered. The compositions and methods of the present invention are useful both prophylactically and therapeutically and may be used to prevent and/or treat malaria.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: April 26, 2022
    Assignee: Geovax, Inc.
    Inventors: Farshad Guirakhoo, Arban Domi, Nathanael Paul McCurley
  • Patent number: 11278607
    Abstract: The compositions and methods are described for generating an immune response to a tumor associated antigen such as MUC1. The compositions and methods described herein relate to a modified vaccinia Ankara (MVA) vector encoding one or more viral antigens for generating a protective immune response to a neoplasm expressing the tumor associated antigen in the subject to which the vector is administered. The compositions and methods of the present invention are useful both prophylactically and therapeutically and may be used to prevent and/or treat neoplasms and associated diseases.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: March 22, 2022
    Assignee: Geovax, Inc.
    Inventors: Harriet Robinson, Arban Domi, Michael Hellerstein, Farshad Guirakhoo, Nathanael Paul McCurley
  • Publication number: 20220086923
    Abstract: Systems, devices, and methods are disclosed for wireless communication of analyte data. In this regard, in embodiments, a mobile includes a transceiver configured to transmit and receive wireless signals. The mobile device includes circuitry operatively coupled to the transceiver. The mobile device also includes a non-transitory computer-readable medium operatively coupled to the circuitry and storing instructions that, when executed, cause the mobile device to perform a number of operations. One such operation is to obtain a derivative of a first signal received via a first link. Another such operation is to obtain a derivative of a second signal received via a second link; and. Yet another such operation is to generate a selection for connection to an analyte sensor system, based on a comparison of the derivative of the first signal and the derivative of the second signal.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Inventors: Aditya MANDAPAKA, Douglas William BURNETTE, Hari HAMPAPURAM, Francis William PASCUAL, James Stephen AMIDEI, Darin Edward CHUM DEW, Apurv Ullas KAMATH, Nathanael PAUL, William A. PENDER, Michael A. PLOOF
  • Publication number: 20210350918
    Abstract: Techniques and protocols for establishing secure communications between a display device, a sensor system, and a server system are disclosed. In certain embodiments, the techniques and protocols include secure diabetes device identification techniques and protocols, user-centric mutual authentication techniques and protocols, and device-centric mutual authentication techniques and protocols.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 11, 2021
    Inventors: Nathanael Paul, Jorge Barreras, Aniel Alvarez, Reinier Bao
  • Publication number: 20210260289
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210259591
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260288
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260286
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260287
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210212132
    Abstract: Systems, devices, and methods are disclosed for wireless communication of analyte data. In this regard, in embodiments, a mobile includes a transceiver configured to transmit and receive wireless signals. The mobile device includes circuitry operatively coupled to the transceiver. The mobile device also includes a non-transitory computer-readable medium operatively coupled to the circuitry and storing instructions that, when executed, cause the mobile device to perform a number of operations. One such operation is to obtain a derivative of a first signal received via a first link. Another such operation is to obtain a derivative of a second signal received via a second link; and. Yet another such operation is to generate a selection for connection to an analyte sensor system, based on a comparison of the derivative of the first signal and the derivative of the second signal.
    Type: Application
    Filed: March 3, 2021
    Publication date: July 8, 2021
    Inventors: Aditya Mandapaka, Douglas William Burnette, Hari Hampapuram, Francis William Pascual, James Stephen Amidei, Darin Edward Chum Dew, Apurv Ullas Kamath, Nathanael Paul, William A. Pender, Michael A. Ploof
  • Patent number: 11044537
    Abstract: Systems, devices, and methods are disclosed for wireless communication of analyte data. In this regard, in embodiments, a mobile includes a transceiver configured to transmit and receive wireless signals. The mobile device includes circuitry operatively coupled to the transceiver. The mobile device also includes a non-transitory computer-readable medium operatively coupled to the circuitry and storing instructions that, when executed, cause the mobile device to perform a number of operations. One such operation is to obtain a derivative of a first signal received via a first link. Another such operation is to obtain a derivative of a second signal received via a second link; and. Yet another such operation is to generate a selection for connection to an analyte sensor system, based on a comparison of the derivative of the first signal and the derivative of the second signal.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: June 22, 2021
    Assignee: DexCom, Inc.
    Inventors: Aditya Mandapaka, Douglas William Burnette, Hari Hampapuram, Francis William Pascual, James Stephen Amidei, Darin Edward Chum Dew, Apurv Ullas Kamath, Nathanael Paul, William A. Pender, Michael A. Ploof