Patents by Inventor NATHANIEL H. PARK

NATHANIEL H. PARK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200164080
    Abstract: The subject disclosure is directed to techniques for enhancing the selectivity and efficacy of therapeutic polymers against a broad spectrum of pathogens and cancer cell lines. According to an embodiment, a method is provided that comprises forming a therapeutic polymer based on polymerization of a plurality of therapeutic monomers, wherein the therapeutic polymer provides a therapeutic functionality. The method further comprises attaching biotin to the therapeutic polymer, resulting in a biotin-functionalized therapeutic polymer, wherein the biotin-functionalized therapeutic polymer provides greater therapeutic efficacy relative to the therapeutic polymer.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 28, 2020
    Inventors: James L. Hedrick, Nathaniel H. Park, Yi Yan Yang, Zhi Xiang Voo
  • Publication number: 20200164088
    Abstract: Techniques regarding the transportation of molecular cargo across the BBB are provided. For example, one or more embodiments described herein can comprise a chemical compound to facilitate molecular encapsulation of the molecular cargo. The chemical compound can comprise a diblock copolymer having a molecular backbone comprising a polycarbonate structure and a polyethylene glycol structure. Also, the polycarbonate structure can be functionalized with boronic acid.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 28, 2020
    Inventors: James L. Hedrick, Nathaniel H. Park, Yi Yan Yang, Zhi Xiang Voo, Jeremy Tan
  • Publication number: 20200155686
    Abstract: The subject matter of this invention relates to hydrogel compositions and, more particularly, to hydrogel compositions comprising block copolymers (BCPs) capable of self-assembly into nanoparticles for the delivery and controlled release of therapeutic cargos.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 21, 2020
    Inventors: Mareva B. Fevre, James L. Hedrick, Ashlynn Lee, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang, Zhi Xiang Voo
  • Patent number: 10653142
    Abstract: Techniques regarding polymers with antimicrobial functionality are provided. For example, one or more embodiments described herein can regard a polymer, which can comprise a repeating ionene unit. The repeating ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. Further, the repeating ionene unit can have antimicrobial functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: May 19, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Patent number: 10611792
    Abstract: The subject disclosure is directed to functionalized bile acids, preparation thereof, and usage thereof for therapeutic and material applications. In one embodiment, a method of generating functionalized bile acid materials can comprise directly activating a carboxylic acid of a bile acid compound using a coupling agent comprising an amide or ester compound, thereby generating an intermediate bile acid derivative material. The method can further comprise attaching a functional group material to the intermediate bile acid derivative material by reacting the functional group material and the intermediate bile acid derivative material, thereby generating a functionalized bile acid material.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: James L. Hedrick, Nathaniel H. Park
  • Patent number: 10595527
    Abstract: Techniques regarding chemical compounds with antimicrobial functionality are provided. For example, one or more embodiments describe herein can comprise a monomer that can comprise a molecular backbone. The molecular backbone can comprise a bis(urea)guanidinium structure covalently bonded to a functional group, which can comprise a radical. Also, the monomer can have supramolecular assembly functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: March 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang
  • Publication number: 20200071543
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200071542
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200071541
    Abstract: Embodiments are directed to a method of making an antifouling and bactericidal coating with tailorable surface topology. The method includes depositing a layer of branched polyethyleneimine (BPEI) and diamino-functionalized poly(propylene oxide) (PPO) in a mixture of water and organic solvent on a substrate to form a layer of BPEI/PPO. The method includes depositing a layer of glyoxal in a water-containing solution on the layer of BPEI/PPO. The method further includes curing the layer of BPEI/PPO and layer of glyoxal to form a homogenous, glyoxal crosslinked BPEI/PPO coating, where the curing induces local precipitation and alteration of the glyoxal crosslinked BPEI/PPO coating to provide a textured surface.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10563069
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 18, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, Institute of Bioengineering and Nanotechnology
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200046886
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. In particular, a method for forming an organocatalyzed polythioether coating is provided in which a first solution including a bis-silylated dithiol and a fluoroarene is prepared. A second solution including an organocatalyst is prepared. The first solution and the second solution are mixed to form a mixed solution. The mixed solution is applied to a substrate, and the substrate is cured.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 13, 2020
    Inventors: Amos Cahan, Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200023069
    Abstract: Embodiments of the invention are directed to a macromolecular chemotherapeutic. A non-limiting example of the macromolecular chemotherapeutic includes a block copolymer. The block copolymer can include a water-soluble block, a cationic block, and a linker, wherein the linker is connected to the water-soluble bock and the charged block.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 23, 2020
    Inventors: Dylan Boday, Wei Cheng, Jeannette M. Garcia, James Hedrick, Nathaniel H. Park, Rudy J. Wojtecki, Chuan Yang, YiYan Yang
  • Publication number: 20200010613
    Abstract: Techniques regarding the synthesis of one or more polymers through one or more ring-opening polymerizations conducted within a flow reactor and facilitated by one or more anionic catalysts are provided. For example, one or more embodiments can comprise a method, which can comprise functionalizing, via a post-polymerization reaction within a flow reactor, a chemical compound by covalently bonding a trimethylsilyl protected thiol to a pendent functional group of the chemical compound in a presence of a catalyst. The pendent functional group can comprise a perfluoroaryl group and a methylene group.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Nathaniel H. Park, James L. Hedrick, Victoria A. Piunova, Dmitry Zubarev, Gavin O. Jones, Robert M. Waymouth, Binhong Lin
  • Publication number: 20200010612
    Abstract: Techniques regarding the synthesis of one or more polymers through one or more ring-opening polymerizations conducted within a flow reactor and facilitated by one or more anionic catalysts are provided. For example, one or more embodiments can comprise a method, which can comprise polymerizing, via a ring-opening polymerization within a flow reactor, a cyclic monomer in the presence of one or more anionic organocatalysts.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Nathaniel H. Park, James L. Hedrick, Victoria A. Piunova, Dmitry Zubarev, Gavin O. Jones, Robert M. Waymouth, Binhong Lin
  • Publication number: 20200010610
    Abstract: Techniques regarding the synthesis of polyesters and/or polycarbonates through one or more ring-opening polymerizations conducted within a flow reactor and facilitated by a urea anion catalyst and/or a thiourea catalyst are provided. For example, one or more embodiments can comprise a method, which can comprise polymerizing, via a ring-opening polymerization within a flow reactor, a cyclic monomer in the presence an organocatalyst comprising a urea anion.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Nathaniel H. Park, James L. Hedrick, Victoria A. Piunova, Dmitry Zubarev, Gavin O. Jones, Robert M. Waymouth, Binhong Lin
  • Publication number: 20190388460
    Abstract: Compositions and methods regarding antimicrobial guanidinium macromolecules with one or more targeting moieties for selectively targeting bacteria are provided. According to an embodiment, an antimicrobial macromolecule is provided that comprises a polymer backbone and one or more guanidinium moieties that extend from the polymer backbone. The antimicrobial macromolecule further comprises a targeting moiety that extends from the polymer backbone. The targeting moiety can comprise a substance favored for consumption by bacteria, such as a monosaccharide.
    Type: Application
    Filed: June 20, 2018
    Publication date: December 26, 2019
    Inventors: James L. Hedrick, Yi Yan Yang, Nathaniel H. Park, Victoria A. Piunova, Zhi Xiang Voo
  • Patent number: 10507267
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. In particular, a method for forming an organocatalyzed polythioether coating is provided in which a first solution including a bis-silylated dithiol and a fluoroarene is prepared. A second solution including an organocatalyst is prepared. The first solution and the second solution are mixed to form a mixed solution. The mixed solution is applied to a substrate, and the substrate is cured.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: December 17, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Amos Cahan, Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10463746
    Abstract: Embodiments of the invention are directed to a macromolecular chemotherapeutic. A non-limiting example of the macromolecular chemotherapeutic includes a block copolymer. The block copolymer can include a water-soluble block, a cationic block, and a linker, wherein the linker is connected to the water-soluble bock and the charged block.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 5, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Dylan Boday, Wei Cheng, Jeannette M. Garcia, James Hedrick, Nathaniel H. Park, Rudy J. Wojtecki, Chuan Yang, YiYan Yang
  • Publication number: 20190307684
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10376468
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 13, 2019
    Assignees: International Business Machines Corporation, Institute of Bioengineering and Nanotechnology, Biomedical Sciences Institute
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang