Patents by Inventor Nathaniel Pinckney

Nathaniel Pinckney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11769040
    Abstract: A distributed deep neural net (DNN) utilizing a distributed, tile-based architecture implemented on a semiconductor package. The package includes multiple chips, each with a central processing element, a global memory buffer, and processing elements. Each processing element includes a weight buffer, an activation buffer, and multiply-accumulate units to combine, in parallel, the weight values and the activation values.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: September 26, 2023
    Assignee: NVIDIA CORP.
    Inventors: Yakun Shao, Rangharajan Venkatesan, Nan Jiang, Brian Matthew Zimmer, Jason Clemons, Nathaniel Pinckney, Matthew R Fojtik, William James Dally, Joel S. Emer, Stephen W. Keckler, Brucek Khailany
  • Publication number: 20200082246
    Abstract: A distributed deep neural net (DNN) utilizing a distributed, tile-based architecture implemented on a semiconductor package. The package includes multiple chips, each with a central processing element, a global memory buffer, and processing elements. Each processing element includes a weight buffer, an activation buffer, and multiply-accumulate units to combine, in parallel, the weight values and the activation values.
    Type: Application
    Filed: July 19, 2019
    Publication date: March 12, 2020
    Applicant: NVIDIA Corp.
    Inventors: Yakun Shao, Rangharajan Venkatesan, Nan Jiang, Brian Matthew Zimmer, Jason Clemons, Nathaniel Pinckney, Matthew R. Fojtik, William James Dally, Joel S. Emer, Stephen W. Keckler, Brucek Khailany
  • Patent number: 9075675
    Abstract: A data processing apparatus is provided for producing a randomized value. A cell in the data processing apparatus comprises a dielectric oxide layer and stress voltage circuitry is configured to apply a stress voltage across the dielectric oxide layer of the cell to cause an oxide breakdown process to occur. Oxide breakdown detection circuitry is configured to determine a current extent of the oxide breakdown process by measuring a response of the dielectric oxide layer to the stress voltage and randomized value determination circuitry is configured to determine a randomized value in dependence on the current extent of the oxide breakdown process.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: July 7, 2015
    Assignee: The Regents of the University of Michigan
    Inventors: Nurrachman Chih Yeh Liu, Scott M Hanson, Nathaniel Pinckney, David T Blaauw, Dennis M. Sylvester
  • Patent number: 8930427
    Abstract: A data processing apparatus is provided for producing a randomized value. A cell in the data processing apparatus comprises a dielectric oxide layer and stress voltage circuitry is configured to apply a stress voltage across the dielectric oxide layer of the cell to cause an oxide breakdown process to occur. Oxide breakdown detection circuitry is configured to determine a current extent of the oxide breakdown process by measuring a response of the dielectric oxide layer to the stress voltage and randomized value determination circuitry is configured to determine a randomized value in dependence on the current extent of the oxide breakdown process.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of Michigan
    Inventors: Nurrachman Chih Yeh Liu, Scott M Hanson, Nathaniel Pinckney, David T Blaauw, Dennis M. Sylvester
  • Publication number: 20120030268
    Abstract: A data processing apparatus is provided for producing a randomized value. A cell in the data processing apparatus comprises a dielectric oxide layer and stress voltage circuitry is configured to apply a stress voltage across the dielectric oxide layer of the cell to cause an oxide breakdown process to occur. Oxide breakdown detection circuitry is configured to determine a current extent of the oxide breakdown process by measuring a response of the dielectric oxide layer to the stress voltage and randomized value determination circuitry is configured to determine a randomized value in dependence on the current extent of the oxide breakdown process.
    Type: Application
    Filed: June 2, 2011
    Publication date: February 2, 2012
    Applicant: University of Michigan
    Inventors: Nurrachman Chih Yeh Liu, Scott M. Hanson, Nathaniel Pinckney, David T. Blaauw, Dennis M. Sylvester
  • Publication number: 20100090866
    Abstract: A beacon system includes emitter devices, driver circuitry configured for controlling the emitter devices, and at least one processor programmed to receive and process one or more inputs and control the driver circuitry to actuate the emitter devices. In an example embodiment, the emitter devices include visible light sources that are oriented to provide omni-directional visibility for the beacon system. In an example embodiment, components of the beacon system including the emitter devices, driver circuitry and at least one processor are configured such that in a space environment heat generated by the beacon system is dissipated sufficiently well to prevent the beacon system from overheating.
    Type: Application
    Filed: October 13, 2008
    Publication date: April 15, 2010
    Inventors: Howard Chen, Andrew Joseph Giles, Nathaniel Pinckney, Sarah Harris, Andrew Danowitz, Samuel Seth Osofsky