Patents by Inventor Nathaniel S. Michaluk

Nathaniel S. Michaluk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11752881
    Abstract: A method of operating a vehicle includes a vehicle controller receiving an operator-input vehicle control command with an associated torque request, and identifying any propulsion actuator constraints that limit a brake torque capacity available from the vehicle powertrain. Using the propulsion actuator constraint(s) and torque request, the controller determines a propulsion brake torque distribution for the vehicle's road wheels and a maximum brake torque capacity for the powertrain actuator(s). A first brake torque request is determined using the propulsion brake torque distribution and a vehicle control mode of the powertrain system, and a second brake torque request is determined using the maximum brake torque capacity and the vehicle control mode. A friction brake torque command is determined by arbitrating between the first and second brake torque requests.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: September 12, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul G. Otanez, Yiran Hu, Nathaniel S. Michaluk, Krunal P. Patel, Adam J. Heisel, Kevin J. Storch, Jacob M. Knueven, Matthew Yard
  • Patent number: 11685262
    Abstract: A method of operating a vehicle includes a vehicle controller receiving a driver acceleration/deceleration command for the vehicle's powertrain and determining a torque request corresponding to the driver's acceleration command. The controller shapes the torque request and determines compensated and uncompensated accelerations from the shaped torque request. The compensated acceleration is based on an estimated road grade and an estimated vehicle mass, whereas the uncompensated acceleration is based on a zero road grade and a nominal vehicle mass. A final speed horizon profile is calculated as: a speed-control speed profile based on the uncompensated acceleration if the vehicle's speed is below a preset low vehicle speed; or a torque-control speed profile based on a blend of the compensated and uncompensated accelerations if the vehicle speed exceeds the preset low vehicle speed. The controller commands the powertrain to output a requested axle torque based on the final speed horizon profile.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: June 27, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul G. Otanez, Adam J. Heisel, Nathaniel S. Michaluk, Yiran Hu, Jacob M. Knueven, Todd P. Lindemann
  • Publication number: 20220227237
    Abstract: A method of operating a vehicle includes a vehicle controller receiving an operator-input vehicle control command with an associated torque request, and identifying any propulsion actuator constraints that limit a brake torque capacity available from the vehicle powertrain. Using the propulsion actuator constraint(s) and torque request, the controller determines a propulsion brake torque distribution for the vehicle's road wheels and a maximum brake torque capacity for the powertrain actuator(s). A first brake torque request is determined using the propulsion brake torque distribution and a vehicle control mode of the powertrain system, and a second brake torque request is determined using the maximum brake torque capacity and the vehicle control mode. A friction brake torque command is determined by arbitrating between the first and second brake torque requests.
    Type: Application
    Filed: January 20, 2021
    Publication date: July 21, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Paul G. Otanez, Yiran Hu, Nathaniel S. Michaluk, Krunal P. Patel, Adam J. Heisel, Kevin J. Storch, Jacob M. Knueven, Matthew Yard
  • Publication number: 20220176827
    Abstract: A method of operating a vehicle includes a vehicle controller receiving a driver acceleration/deceleration command for the vehicle's powertrain and determining a torque request corresponding to the driver's acceleration command. The controller shapes the torque request and determines compensated and uncompensated accelerations from the shaped torque request. The compensated acceleration is based on an estimated road grade and an estimated vehicle mass, whereas the uncompensated acceleration is based on a zero road grade and a nominal vehicle mass. A final speed horizon profile is calculated as: a speed-control speed profile based on the uncompensated acceleration if the vehicle's speed is below a preset low vehicle speed; or a torque-control speed profile based on a blend of the compensated and uncompensated accelerations if the vehicle speed exceeds the preset low vehicle speed. The controller commands the powertrain to output a requested axle torque based on the final speed horizon profile.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 9, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Paul G. Otanez, Adam J. Heisel, Nathaniel S. Michaluk, Yiran Hu, Jacob M. Knueven, Todd P. Lindemann
  • Publication number: 20220105925
    Abstract: Method and systems for one-pedal driving (OPD) control for a vehicle. The methods and systems determine that regenerative braking is to be applied based on accelerator pedal stroke data, predict an upcoming deceleration event based on sensor data from a sensor system of the vehicle, thereby providing deceleration prediction data, adjust a default braking profile based on the deceleration prediction data, generate a regenerative braking command based on the accelerator pedal stroke data and the adjusted braking profile, and output the regenerative braking command to a motor/generator of the vehicle.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 7, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mohammad Naserian, Soheil Samii, Nathaniel S. Michaluk
  • Patent number: 10556587
    Abstract: A system and method of mitigating errors in a device includes a controller having a processor and tangible, non-transitory memory on which is recorded instructions. The propulsion source is configured to generate propulsion torque in response to a command by the controller. The controller is configured to determine if at least one predefined enabling condition is met. If at least one predefined enabling condition is met, then the controller is configured to determine if a speed of the device is at a target speed. Operation of the device is controlled based at least partially on the speed of the device. If the speed of the device is above or below the target speed, the controller is configured to determine a propulsion torque sufficient to bring the device to the target speed. The propulsion torque is delivered to the device via the propulsion source.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: February 11, 2020
    Assignee: GM Global Technology Operations LLC
    Inventor: Nathaniel S. Michaluk
  • Patent number: 10227021
    Abstract: A road load module is configured to determine a road load torque to maintain zero vehicle acceleration. An initialization module is configured to determine an initial torque based on the road load torque. A closed loop (CL) module is configured to: when a CL state transitions from an inactive state to an active state, set a CL torque to the initial torque; and when the CL state is in the active state after transitioning to the active state, adjust the CL torque based on a difference between a target vehicle speed and a vehicle speed. A motor torque module is configured to determine a motor torque command based on the CL torque and a motor torque request determined based on an accelerator pedal position. A switching control module is configured to, based on the motor torque command, control switching of an inverter and apply power to an electric motor.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: March 12, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Love Lor, Adam J. Heisel, Nathaniel S. Michaluk, Robert L. Morris
  • Publication number: 20190047562
    Abstract: A system and method of mitigating errors in a device includes a controller having a processor and tangible, non-transitory memory on which is recorded instructions. The propulsion source is configured to generate propulsion torque in response to a command by the controller. The controller is configured to determine if at least one predefined enabling condition is met. If at least one predefined enabling condition is met, then the controller is configured to determine if a speed of the device is at a target speed. Operation of the device is controlled based at least partially on the speed of the device. If the speed of the device is above or below the target speed, the controller is configured to determine a propulsion torque sufficient to bring the device to the target speed. The propulsion torque is delivered to the device via the propulsion source.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Nathaniel S. Michaluk
  • Publication number: 20180264971
    Abstract: A road load module is configured to determine a road load torque to maintain zero vehicle acceleration. An initialization module is configured to determine an initial torque based on the road load torque. A closed loop (CL) module is configured to: when a CL state transitions from an inactive state to an active state, set a CL torque to the initial torque; and when the CL state is in the active state after transitioning to the active state, adjust the CL torque based on a difference between a target vehicle speed and a vehicle speed. A motor torque module is configured to determine a motor torque command based on the CL torque and a motor torque request determined based on an accelerator pedal position. A switching control module is configured to, based on the motor torque command, control switching of an inverter and apply power to an electric motor.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventors: Love LOR, Adam J. Heisel, Nathaniel S. Michaluk, Robert L. Morris
  • Patent number: 9809130
    Abstract: An electric motor control system for a vehicle includes a vehicle speed module that determines a vehicle speed. A closed loop (CL) module determines a CL torque based on a difference between a target vehicle speed and the vehicle speed. A motor torque module determines a motor torque based on the CL torque and a motor torque request determined based on a position of an accelerator pedal. A switching control module controls switching of an inverter based on the motor torque to control application of power to an electric motor of the vehicle.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 7, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Adam J. Heisel, Christopher J. Twarog, Anthony H. Heap, Derek S. Bonderczuk, Krunal P. Patel, Lawrence A. Kaminsky, Nathaniel S. Michaluk, Robert L. Morris, Shaochun Ye, Jeffrey J. Waldner
  • Publication number: 20170136916
    Abstract: An electric motor control system for a vehicle includes a vehicle speed module that determines a vehicle speed. A closed loop (CL) module determines a CL torque based on a difference between a target vehicle speed and the vehicle speed. A motor torque module determines a motor torque based on the CL torque and a motor torque request determined based on a position of an accelerator pedal. A switching control module controls switching of an inverter based on the motor torque to control application of power to an electric motor of the vehicle.
    Type: Application
    Filed: March 24, 2016
    Publication date: May 18, 2017
    Inventors: Adam J. HEISEL, Christopher J. Twarog, Anthony H. Heap, Derek S. Bonderczuk, Krunal P. Patel, Lawrence A. Kaminsky, Nathaniel S. Michaluk, Robert L. Morris, Shaochun Ye, Jeffrey J. Waldner