Patents by Inventor Naved A. SIDDIQUI

Naved A. SIDDIQUI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11056398
    Abstract: A method includes forming a gate cut opening by removing a sacrificial material from a portion of a dummy gate in a first dielectric over a substrate. The gate cut opening includes a lower portion in which the sacrificial material was located and an upper portion extending laterally over the first dielectric. Filling the gate cut opening with a second dielectric creates a gate cut isolation. Recessing the second dielectric creates a cap opening in the second dielectric; and filling the cap opening with a third dielectric creates a dielectric cap. The third dielectric is different than the second dielectric, e.g., oxide versus nitride, allowing forming of an interconnect in at least a portion of the third dielectric without the second, harder dielectric acting as an etch stop.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: July 6, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Daniel J. Jaeger, Naved A. Siddiqui, Shimpei Yamaguchi, Shreesh Narasimha
  • Publication number: 20210028067
    Abstract: A method includes forming a gate cut opening by removing a sacrificial material from a portion of a dummy gate in a first dielectric over a substrate. The gate cut opening includes a lower portion in which the sacrificial material was located and an upper portion extending laterally over the first dielectric. Filling the gate cut opening with a second dielectric creates a gate cut isolation. Recessing the second dielectric creates a cap opening in the second dielectric; and filling the cap opening with a third dielectric creates a dielectric cap. The third dielectric is different than the second dielectric, e.g., oxide versus nitride, allowing forming of an interconnect in at least a portion of the third dielectric without the second, harder dielectric acting as an etch stop.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 28, 2021
    Inventors: Daniel J. Jaeger, Naved A. Siddiqui, Shimpei Yamaguchi, Shreesh Narasimha
  • Patent number: 10833160
    Abstract: Structures for a field-effect transistor and methods of forming a field-effect transistor. A sidewall spacer is arranged adjacent to a sidewall of a gate electrode, a source/drain region is arranged laterally adjacent to the sidewall spacer, and a contact is arranged over the source/drain region and laterally adjacent to the sidewall spacer. The contact is coupled with the source/drain region. A section of an interlayer dielectric layer is laterally arranged between the contact and the sidewall spacer.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: November 10, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael Aquilino, Daniel Jaeger, Naved Siddiqui, Jessica Dechene, Daniel J. Dechene, Shreesh Narasimha, Natalia Borjemscaia
  • Publication number: 20200335591
    Abstract: Structures for a field-effect transistor and methods of forming a field-effect transistor. A sidewall spacer is arranged adjacent to a sidewall of a gate electrode, a source/drain region is arranged laterally adjacent to the sidewall spacer, and a contact is arranged over the source/drain region and laterally adjacent to the sidewall spacer. The contact is coupled with the source/drain region. A section of an interlayer dielectric layer is laterally arranged between the contact and the sidewall spacer.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 22, 2020
    Inventors: Michael Aquilino, Daniel Jaeger, Naved Siddiqui, Jessica Dechene, Daniel J. Dechene, Shreesh Narasimha, Natalia Borjemscaia
  • Patent number: 10593555
    Abstract: The manufacture of a FinFET device includes the formation of a composite sacrificial gate. The composite sacrificial gate includes a sacrificial gate layer such as a layer of amorphous silicon, and an etch selective layer such as a layer of silicon germanium. The etch selective layer, which underlies the sacrificial gate layer, enables the formation of a gate cut opening having a controlled critical dimension that extends through the composite sacrificial gate.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: March 17, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Qun Gao, Naved Siddiqui, Ankur Arya, John R Sporre
  • Publication number: 20190295852
    Abstract: The manufacture of a FinFET device includes the formation of a composite sacrificial gate. The composite sacrificial gate includes a sacrificial gate layer such as a layer of amorphous silicon, and an etch selective layer such as a layer of silicon germanium. The etch selective layer, which underlies the sacrificial gate layer, enables the formation of a gate cut opening having a controlled critical dimension that extends through the composite sacrificial gate.
    Type: Application
    Filed: March 20, 2018
    Publication date: September 26, 2019
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Qun GAO, Naved SIDDIQUI, Ankur ARYA, John R. Sporre
  • Patent number: 10256152
    Abstract: One illustrative method disclosed herein includes, among other things, forming a conformal piezoelectric material liner layer on at least the opposing lateral sidewalls of a fin, forming a recessed layer of insulating material on opposite sides of the fin and on the conformal piezoelectric material liner layer, removing portions of the conformal piezoelectric material liner layer positioned above the recessed layer of insulating material to thereby expose a portion of the fin above the recessed upper surface, and forming a gate structure above the recessed layer of insulating material and around a portion of the fin positioned above the recessed upper surface.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: April 9, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Qun Gao, Naved Siddiqui, Anthony I. Chou
  • Publication number: 20190027601
    Abstract: One illustrative method disclosed herein includes, among other things, forming a conformal piezoelectric material liner layer on at least the opposing lateral sidewalls of a fin, forming a recessed layer of insulating material on opposite sides of the fin and on the conformal piezoelectric material liner layer, removing portions of the conformal piezoelectric material liner layer positioned above the recessed layer of insulating material to thereby expose a portion of the fin above the recessed upper surface, and forming a gate structure above the recessed layer of insulating material and around a portion of the fin positioned above the recessed upper surface.
    Type: Application
    Filed: July 24, 2017
    Publication date: January 24, 2019
    Inventors: Qun Gao, Naved Siddiqui, Anthony I. Chou
  • Publication number: 20190019862
    Abstract: Methods for preventing fin bending in FinFET devices and related devices are provided. Embodiments include forming fins in a substrate; forming a non-conformal sacrificial layer over and between the fins to structurally conjoin the fins or an array of fins for structural integrity; forming a first gap-fill dielectric over the sacrificial layer and fins; recessing the first gap-fill dielectric to expose an upper portion of the fins and sacrificial layer; etching the sacrificial layer to expose the fins; forming a second gap-fill dielectric over the first gap-fill dielectric and over and between the fins; and recessing the second gap-fill dielectric to expose the upper portion of the fins.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 17, 2019
    Inventors: A K M Zahidur Rahim CHOWDHURY, Shahrukh Akbar KHAN, Joseph SHEPARD, JR., Mohammad HASANUZZAMAN, Naved A. SIDDIQUI, Shafaat AHMED
  • Patent number: 10014364
    Abstract: Device structures and fabrication methods for an on-chip resistor. A first Seebeck terminal is arranged to overlap with first and second resistor bodies of the on-chip resistor. A second Seebeck terminal is also arranged to overlap with the first and second resistor bodies. The second Seebeck terminal has a spaced relationship with the first Seebeck terminal along a length of the first and second resistor bodies. The temperature coefficient of resistance of the on-chip resistor is based at least in part on a Seebeck coefficient of first and second Seebeck terminals.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: July 3, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Qun Gao, Anthony Chou, Stephen Furkay, Naved Siddiqui