Patents by Inventor Naveen Thumpudi

Naveen Thumpudi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9398217
    Abstract: One or more techniques and/or systems are provided for video stabilization and/or for image frame generation. For example, a user may instruct a video application hosted on a smart phone to capture a video at a target resolution of 1080 pixels. A padded input having a padded resolution that is larger than the target resolution may be obtained from a capture device, such as a camera of the smart phone. The padded input may be provided to a video stabilization component to obtain a target image frame having the target resolution. In this way, the video stabilization component may perform cropping using padded margin pixels (e.g., additional pixels of the padded input beyond the 1080 pixels of the target resolution) so that image upscaling after cropping (e.g., to account for global warping, etc.) may be mitigated to reduce blur that may otherwise result from image upscaling.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: July 19, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jinglin Shen, Naveen Thumpudi, Jeffrey D. Day, Yongjun Wu, Sandeep Kanumuri
  • Publication number: 20160112630
    Abstract: One or more techniques and/or systems are provided for camera capture recommendation. For example, an application may operate to capture an image using a capture device (e.g., a user may use a camera of a smart phone to capture a vacation photo for sharing through a social network app). Camera parameters of the capture device and/or a preview data stream (e.g., pixel data depicting a beach “seen” by the camera in real-time) may be used to generate a camera capture recommendation (e.g., a recommendation to use a haze removal module, a high dynamic range module, a focus bracketing module, etc.). The camera capture recommendation is provided to the application. In this way, the application may selectively use, override, supplement (e.g., use an application supplied module), or modify the camera capture recommendation for application to the capture device to obtain an output image.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 21, 2016
    Inventors: Sandeep Kanumuri, Naveen Thumpudi
  • Publication number: 20160112638
    Abstract: One or more techniques and/or systems are provided for video stabilization and/or for image frame generation. For example, a user may instruct a video application hosted on a smart phone to capture a video at a target resolution of 1080 pixels. A padded input having a padded resolution that is larger than the target resolution may be obtained from a capture device, such as a camera of the smart phone. The padded input may be provided to a video stabilization component to obtain a target image frame having the target resolution. In this way, the video stabilization component may perform cropping using padded margin pixels (e.g., additional pixels of the padded input beyond the 1080 pixels of the target resolution) so that image upscaling after cropping (e.g., to account for global warping, etc.) may be mitigated to reduce blur that may otherwise result from image upscaling.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 21, 2016
    Inventors: Jinglin Shen, Naveen Thumpudi, Jeffrey D. Day, Yongjun Wu, Sandeep Kanumuri
  • Patent number: 9305558
    Abstract: The invention includes several techniques and tools, which can be used in combination or separately. For example, an audio encoder can encode information directly using coding processes that include a windowed overlapped transform, a selective multi-channel transform, scalar quantization and entropy encoding. The audio encoder can also encode information parametrically according to a parametric compression mode that accounts for audibility of distortion according to an auditory model. A corresponding audio decoder can decode first information directly and second information according to the parametric decompression mode.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: April 5, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Patent number: 9264658
    Abstract: A video bit stream with pictures comprising inter-coded content can be decoded upon receiving a channel start or file seek instruction. Pictures for beginning decoding and display of the bit stream can be selected based at least in part on one or more tuning parameters that set a preference between a latency of beginning to display video and possible defects in the displayed video. In some embodiments, to implement decoding upon a channel start or file seek, one or more types of data are generated for one or more pictures. For example, picture order counts are generated for pictures after a channel start or file seek operation. As another example, a decoder generates a frame number value that triggers re-initialization of a reference picture buffer before decoding after a channel start or file seek operation.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: February 16, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Yongjun Wu, Gang Ji, Shyam Sadhwani, Naveen Thumpudi, Eric S. Christoffersen
  • Patent number: 9241167
    Abstract: A video decoder is disclosed that uses metadata in order to make optimization decisions. In one embodiment, metadata is used to choose which of multiple available decoder engines should receive a video sequence. In another embodiment, the optimization decisions can be based on length and location metadata information associated with a video sequence. Using such metadata information, a decoder engine can skip start-code scanning to make the decoding process more efficient. Also based on the choice of decoder engine, it can decide whether emulation prevention byte removal shall happen together with start code scanning or not.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: January 19, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Yongjun Wu, Shyam Sadhwani, Naveen Thumpudi
  • Patent number: 9131241
    Abstract: Adjustment of hardware acceleration level in a video decoder utilizing hardware acceleration is described. Errors are detected in a bitstream as it is decoded using different levels of error detection based on decoding characteristics. A statistical analysis is performed on the error values as they are detected. In one technique, if the bitstream is categorized as fitting a high error rate state in a bitstream model, then hardware acceleration is dropped. In another technique, error statistics based on run-lengths of good and bad bitstream units are kept, and compared to predetermined thresholds. If the thresholds are exceeded, the hardware acceleration level is dropped. The level is dropped in order to take advantage of superior error handing abilities of software-based decoding over hardware-accelerated decoding.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: September 8, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Gang Ji, Naveen Thumpudi, Shyam Sadhwani, Yongjun Wu
  • Publication number: 20150036010
    Abstract: Video image stabilization provides better performance on a generic platform for computing devices by evaluating available multimedia digital signal processing components, and selecting the available components to utilize according to a hierarchy structure for video stabilization performance for processing parts of the video stabilization. The video stabilization has improved motion vector estimation that employs refinement motion vector searching according to a pyramid block structure relationship starting from a downsampled resolution version of the video frames. The video stabilization also improves global motion transform estimation by performing a random sample consensus approach for processing the local motion vectors, and selection criteria for motion vector reliability. The video stabilization achieves the removal of hand shakiness smoothly by real-time one-pass or off-line two-pass temporal smoothing with error detection and correction.
    Type: Application
    Filed: October 20, 2014
    Publication date: February 5, 2015
    Applicant: Microsoft Corporation
    Inventors: Yongjun Wu, Nikola Borisov, Weidong Zhao, Shyam Sadhwani, Naveen Thumpudi
  • Patent number: 8896715
    Abstract: Video image stabilization provides better performance on a generic platform for computing devices by evaluating available multimedia digital signal processing components, and selecting the available components to utilize according to a hierarchy structure for video stabilization performance for processing parts of the video stabilization. The video stabilization has improved motion vector estimation that employs refinement motion vector searching according to a pyramid block structure relationship starting from a downsampled resolution version of the video frames. The video stabilization also improves global motion transform estimation by performing a random sample consensus approach for processing the local motion vectors, and selection criteria for motion vector reliability. The video stabilization achieves the removal of hand shakiness smoothly by real-time one-pass or off-line two-pass temporal smoothing with error detection and correction.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: November 25, 2014
    Assignee: Microsoft Corporation
    Inventors: Yongjun Wu, Nikola Borisov, Weidong Zhao, Shyam Sadhwani, Naveen Thumpudi
  • Publication number: 20140316788
    Abstract: An audio encoder implements multi-channel coding decision, band truncation, multi-channel rematrixing, and header reduction techniques to improve quality and coding efficiency. In the multi-channel coding decision technique, the audio encoder dynamically selects between joint and independent coding of a multi-channel audio signal via an open-loop decision based upon (a) energy separation between the coding channels, and (b) the disparity between excitation patterns of the separate input channels. In the band truncation technique, the audio encoder performs open-loop band truncation at a cut-off frequency based on a target perceptual quality measure. In multi-channel rematrixing technique, the audio encoder suppresses certain coefficients of a difference channel by scaling according to a scale factor, which is based on current average levels of perceptual quality, current rate control buffer fullness, coding mode, and the amount of channel separation in the source.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Applicant: Microsoft Corporation
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Patent number: 8861927
    Abstract: Described techniques and tools include techniques and tools for mapping digital media data (e.g., audio, video, still images, and/or text, among others) in a given format to a transport or file container format useful for encoding the data on optical disks such as digital video disks (DVDs). A digital media universal elementary stream can be used to map digital media streams (e.g., an audio stream, video stream or an image) into any arbitrary transport or file container, including optical disk formats, and other transports, such as broadcast streams, wireless transmissions, etc. The information to decode any given frame of the digital media in the stream can be carried in each coded frame. A digital media universal elementary stream includes stream components called chunks. An implementation of a digital media universal elementary stream arranges data for a media stream in frames, the frames having one or more chunks.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Microsoft Corporation
    Inventors: Sudheer Sirivara, James D. Johnston, Naveen Thumpudi, Wei-Ge Chen, Serge Smirnov, Chris Messer
  • Publication number: 20140294094
    Abstract: A media processing tool adds custom data to an elementary media bitstream or media container. The custom data indicates nominal range of samples of media content, but the meaning of the custom data is not defined in the codec format or media container format. For example, the custom data indicates the nominal range is full range or limited range. For playback, a media processing tool parses the custom data and determines an indication of media content type. A rendering engine performs color conversion operations whose logic changes based at least in part on the media content type. In this way, a codec format or media container format can in effect be extended to support full nominal range media content as well as limited nominal range media content, and hence preserve full or correct color fidelity, while maintaining backward compatibility and conformance with the codec format or media container format.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: Microsoft Corporation
    Inventors: Yongjun Wu, Naveen Thumpudi, Shyam Sadhwani
  • Patent number: 8805696
    Abstract: An audio encoder implements multi-channel coding decision, band truncation, multi-channel rematrixing, and header reduction techniques to improve quality and coding efficiency. In the multi-channel coding decision technique, the audio encoder dynamically selects between joint and independent coding of a multi-channel audio signal via an open-loop decision based upon (a) energy separation between the coding channels, and (b) the disparity between excitation patterns of the separate input channels. In the band truncation technique, the audio encoder performs open-loop band truncation at a cut-off frequency based on a target perceptual quality measure. In multi-channel rematrixing technique, the audio encoder suppresses certain coefficients of a difference channel by scaling according to a scale factor, which is based on current average levels of perceptual quality, current rate control buffer fullness, coding mode, and the amount of channel separation in the source.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: August 12, 2014
    Assignee: Microsoft Corporation
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Publication number: 20140039884
    Abstract: An audio encoder implements multi-channel coding decision, band truncation, multi-channel rematrixing, and header reduction techniques to improve quality and coding efficiency. In the multi-channel coding decision technique, the audio encoder dynamically selects between joint and independent coding of a multi-channel audio signal via an open-loop decision based upon (a) energy separation between the coding channels, and (b) the disparity between excitation patterns of the separate input channels. In the band truncation technique, the audio encoder performs open-loop band truncation at a cut-off frequency based on a target perceptual quality measure. In multi-channel rematrixing technique, the audio encoder suppresses certain coefficients of a difference channel by scaling according to a scale factor, which is based on current average levels of perceptual quality, current rate control buffer fullness, coding mode, and the amount of channel separation in the source.
    Type: Application
    Filed: October 7, 2013
    Publication date: February 6, 2014
    Applicant: MICROSOFT CORPORATION
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Patent number: 8620674
    Abstract: An audio encoder and decoder use architectures and techniques that improve the efficiency of multi-channel audio coding and decoding. The described strategies include various techniques and tools, which can be used in combination or independently. For example, an audio encoder performs a pre-processing multi-channel transform on multi-channel audio data, varying the transform so as to control quality. The encoder groups multiple windows from different channels into one or more tiles and outputs tile configuration information, which allows the encoder to isolate transients that appear in a particular channel with small windows, but use large windows in other channels. Using a variety of techniques, the encoder performs flexible multi-channel transforms that effectively take advantage of inter-channel correlation. An audio decoder performs corresponding processing and decoding. In addition, the decoder performs a post-processing multi-channel transform for any of multiple different purposes.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 31, 2013
    Assignee: Microsoft Corporation
    Inventors: Naveen Thumpudi, Wei-Ge Chen
  • Patent number: 8554569
    Abstract: An audio encoder implements multi-channel coding decision, band truncation, multi-channel rematrixing, and header reduction techniques to improve quality and coding efficiency. In the multi-channel coding decision technique, the audio encoder dynamically selects between joint and independent coding of a multi-channel audio signal via an open-loop decision based upon (a) energy separation between the coding channels, and (b) the disparity between excitation patterns of the separate input channels. In the band truncation technique, the audio encoder performs open-loop band truncation at a cut-off frequency based on a target perceptual quality measure. In multi-channel rematrixing technique, the audio encoder suppresses certain coefficients of a difference channel by scaling according to a scale factor, which is based on current average levels of perceptual quality, current rate control buffer fullness, coding mode, and the amount of channel separation in the source.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: October 8, 2013
    Assignee: Microsoft Corporation
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Publication number: 20130215978
    Abstract: A video decoder is disclosed that uses metadata in order to make optimization decisions. In one embodiment, metadata is used to choose which of multiple available decoder engines should receive a video sequence. In another embodiment, the optimization decisions can be based on length and location metadata information associated with a video sequence. Using such metadata information, a decoder engine can skip start-code scanning to make the decoding process more efficient. Also based on the choice of decoder engine, it can decide whether emulation prevention byte removal shall happen together with start code scanning or not.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: Microsoft Corporation
    Inventors: Yongjun Wu, Shyam Sadhwani, Naveen Thumpudi
  • Publication number: 20130141642
    Abstract: A battery operated device, having a display with two or more available refresh rates, has its refresh rate selected so as to match the video frame rate of video data played back on the display. This selection is made by coordinating the resources in the device that are used to process the video from its reception through to its display.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 6, 2013
    Applicant: Microsoft Corporation
    Inventors: Yongjun Wu, Shyam Sadhwani, Naveen Thumpudi, Stephen Estrop, Glenn Evans
  • Patent number: 8428943
    Abstract: Quantization matrices facilitate digital audio encoding and decoding. An audio encoder generates and compresses quantization matrices; an audio decoder decompresses and applies the quantization matrices. The invention includes several techniques and tools, which can be used in combination or separately. For example, the audio encoder can generate quantization matrices from critical band patterns for blocks of audio data. The encoder can compute the quantization matrices directly from the critical band patterns, which can be computed from the same audio data that is being compressed. The audio encoder/decoder can use different modes for generating/applying quantization matrices depending on the coding channel mode of multi-channel audio data. The audio encoder/decoder can use different compression/decompression modes for the quantization matrices, including a parametric compression/decompression mode.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: April 23, 2013
    Assignee: Microsoft Corporation
    Inventors: Wei-Ge Chen, Naveen Thumpudi, Ming-Chieh Lee
  • Patent number: 8386269
    Abstract: An audio encoder and decoder use architectures and techniques that improve the efficiency of multi-channel audio coding and decoding. The described strategies include various techniques and tools, which can be used in combination or independently. For example, an audio encoder performs a pre-processing multi-channel transform on multi-channel audio data, varying the transform so as to control quality. The encoder groups multiple windows from different channels into one or more tiles and outputs tile configuration information, which allows the encoder to isolate transients that appear in a particular channel with small windows, but use large windows in other channels. Using a variety of techniques, the encoder performs flexible multi-channel transforms that effectively take advantage of inter-channel correlation. An audio decoder performs corresponding processing and decoding. In addition, the decoder performs a post-processing multi-channel transform for any of multiple different purposes.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 26, 2013
    Assignee: Microsoft Corporation
    Inventors: Naveen Thumpudi, Wei-Ge Chen