Patents by Inventor Nazim Z. Muradov

Nazim Z. Muradov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9139432
    Abstract: A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 22, 2015
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 8623662
    Abstract: Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100° C. to plus 500° C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 7, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 8273140
    Abstract: A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: September 25, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 8268392
    Abstract: Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100° C. to plus 500° C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: September 18, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 8147765
    Abstract: A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO2) and other oxidizing agents.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: April 3, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Nazim Z. Muradov, Franklyn Smith, Ali Tabatabaie-Raissi
  • Patent number: 8119198
    Abstract: This invention relates to novel three-dimensional (3D) carbon fibers which are original (or primary) carbon fibers (OCF) with secondary carbon filaments (SCF) grown thereon, and, if desired, tertiary carbon filaments (TCF) are grown from the surface of SCF forming a filamentous carbon network with high surface area. The methods and apparatus are provided for growing SCF on the OCF by thermal decomposition of carbonaceous gases (CG) over the hot surface of the OCF without use of metal-based catalysts. The thickness and length of SCF can be controlled by varying operational conditions of the process, e.g., the nature of CG, temperature, residence time, etc. The optional activation step enables one to produce 3D activated carbon fibers with high surface area. The method and apparatus are provided for growing TCF on the SCF by thermal decomposition of carbonaceous gases over the hot surface of the SCF using metal catalyst particles.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: February 21, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 8002854
    Abstract: A novel process and apparatus are disclosed for sustainable CO2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 23, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 7816004
    Abstract: This invention relates to novel three-dimensional (3D) carbon fibers which are original (or primary) carbon fibers (OCF) with secondary carbon filaments (SCF) grown thereon, and, if desired, tertiary carbon filaments (TCF) are grown from the surface of SCF forming a filamentous carbon network with high surface area. The methods and apparatus are provided for growing SCF on the OCF by thermal decomposition of carbonaceous gases (CG) over the hot surface of the OCF without use of metal-based catalysts. The thickness and length of SCF can be controlled by varying operational conditions of the process, e.g., the nature of CG, temperature, residence time, etc. The optional activation step enables one to produce 3D activated carbon fibers with high surface area. The method and apparatus are provided for growing TCF on the SCF by thermal decomposition of carbonaceous gases over the hot surface of the SCF using metal catalyst particles.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: October 19, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Publication number: 20100255197
    Abstract: This invention relates to novel three-dimensional (3D) carbon fibers which are original (or primary) carbon fibers (OCF) with secondary carbon filaments (SCF) grown thereon, and, if desired, tertiary carbon filaments (TCF) are grown from the surface of SCF forming a filamentous carbon network with high surface area. The methods and apparatus are provided for growing SCF on the OCF by thermal decomposition of carbonaceous gases (CG) over the hot surface of the OCF without use of metal-based catalysts. The thickness and length of SCF can be controlled by varying operational conditions of the process, e.g., the nature of CG, temperature, residence time, etc. The optional activation step enables one to produce 3D activated carbon fibers with high surface area. The method and apparatus are provided for growing TCF on the SCF by thermal decomposition of carbonaceous gases over the hot surface of the SCF using metal catalyst particles.
    Type: Application
    Filed: June 18, 2010
    Publication date: October 7, 2010
    Inventor: Nazim Z. Muradov
  • Patent number: 7803349
    Abstract: A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 28, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 7691182
    Abstract: Hydrogen production is provided via integrated closed-loop processing of landfill gas (LFG) and solid biomass feedstocks such as various agricultural wastes with minimal environmental impact. LFG is purified of harmful contaminants over a bed of activated charcoal (AC) and is catalytically reformed to synthesis gas, which is further processed to pure hydrogen via CO-shift and pressure-swing adsorption stages. Biomass is gasified in the presence of steam with production of a producer gas and AC. The producer gas is mixed with LFG and is processed to hydrogen as described above. High-surface area AC produced in the gasifier is used for the purification of both LFG and producer gas. An integrated processing of LFG and biomass offers a number of advantages such as a high overall energy efficiency, feedstock flexibility, substantial reduction in greenhouse gas emissions and production of value-added product-biocarbon that can be used as a soil enhancer.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: April 6, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Nazim Z. Muradov, Franklyn Smith, Ali Tabatabaie-Raissi
  • Patent number: 7588746
    Abstract: The present invention relates to a novel process for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO2) and other oxidizing agents.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: September 15, 2009
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Nazim Z. Muradov, Franklyn Smith, Ali Tabatabaieraissi
  • Publication number: 20090060805
    Abstract: The present invention relates to a novel process for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO2) and other oxidizing agents.
    Type: Application
    Filed: October 23, 2008
    Publication date: March 5, 2009
    Inventors: Nazim Z. Muradov, Franklyn Smith, Ali Tabatabaie-Raissi
  • Patent number: 7375069
    Abstract: Methods, compositions and kits for masking and subsequent removal of oil, grease, rust and other stains from a variety of rough solid surfaces, including, but not limited to stone, concrete, asphalt, stucco brick, and ceramic. The methods include coating the stains with an opaque or translucent thin film of a composition that makes the stain practically indistinguishable against the background, exposing the coated stain to the elements, such as, sunlight, air, moisture, resulting in spontaneous transformation, degradation and subsequent removal of the stains from the solid surfaces. The compositions include a photocatalyst by itself or the photocatalyst combined with at least one of, a sensitizer, a dopant, a mediator, a co-reagent, a pigment and a binder. The role of a photocatalyst is to produce highly reactive species or radicals and initiate the degradation of a stain upon exposure to elements, such as, sunlight, air and ambient humidity. Artificial light sources can be used instead of sunlight.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: May 20, 2008
    Assignee: Research Foundation of the University of Central Florida
    Inventor: Nazim Z. Muradov
  • Patent number: 7358218
    Abstract: Methods, compositions and kits for masking and subsequent removal of oil, grease, rust and other stains from a variety of rough solid surfaces, including, but not limited to stone, concrete, asphalt, stucco brick, and ceramic. The methods include coating the stains with an opaque or translucent thin film of a composition that makes the stain practically indistinguishable against the background, exposing the coated stain to the elements, such as, sunlight, air, moisture, resulting in spontaneous transformation, degradation and subsequent removal of the stains from the solid surfaces. The compositions include a photocatalyst by itself or the photocatalyst combined with at least one of, a sensitizer, a dopant, a mediator, a co-reagent, a pigment and a binder. The role of a photocatalyst is to produce highly reactive species or radicals and initiate the degradation of a stain upon exposure to elements, such as, sunlight, air and ambient humidity. Artificial light sources can be used instead of sunlight.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: April 15, 2008
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 7157167
    Abstract: A novel process and apparatus are disclosed for sustainable CO2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: January 2, 2007
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 7074369
    Abstract: A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: July 11, 2006
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Ali Tabatabaie-Raissi, Nazim Z. Muradov, Eric Martin
  • Patent number: 6787229
    Abstract: This invention relates to novel three-dimensional (3D) carbon fibers which are original (or primary) carbon fibers (OCF) with secondary carbon filaments (SCF) grown thereon, and, if desired, tertiary carbon filaments (TCF) are grown from the surface of SCF forming a filamentous carbon network with high surface area. The methods and apparatus are provided for growing SCF on the OCF by thermal decomposition of carbonaceous gases (CG) over the hot surface of the OCF without use of metal-based catalysts. The thickness and length of SCF can be controlled by varying operational conditions of the process, e.g., the nature of CG, temperature, residence time, etc. The optional activation step enables one to produce 3D activated carbon fibers with high surface area. The method and apparatus are provided for growing TCF on the SCF by thermal decomposition of carbonaceous gases over the hot surface of the SCF using metal catalyst particles.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: September 7, 2004
    Assignee: University of Central Florida
    Inventor: Nazim Z. Muradov
  • Patent number: 6670058
    Abstract: This invention relates to a novel process for sustainable CO2-free production of hydrogen and carbon by thermocatalytic decomposition (or dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The process is applicable to any hydrocarbon fuel, including sulfurous fuels. Combination of a catalytic reactor with a gas separation unit allows to produce high purity hydrogen (at least, 99.0 v %) completely free of carbon oxides. In a preferred embodiment, sustainable continuous production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation can be achieved via surface gasification of carbon catalysts by hot combustion gases during catalyst heating. The process can conveniently be integrated with any type of fuel cell.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: December 30, 2003
    Assignee: University of Central Florida
    Inventor: Nazim Z. Muradov
  • Patent number: 6582666
    Abstract: An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: June 24, 2003
    Inventors: Ali Tabatabaie-Raissi, Nazim Z. Muradov, Eric Martin