Patents by Inventor Neal S. Bergano

Neal S. Bergano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10873390
    Abstract: A novel system and apparatus for detecting and locating an external aggression on at least one optical cable of an optical communication system is provided. For example, a signal from a transmitter may be received and analysis may be performed to recover a state-of-polarization (SOP) associated with the signal. A first rapid polarization change that occurs may be identified, which may indicate that an external aggression has occurred on the at least one optical cable. A time offset between the first rapid polarization change and a second rapid polarization change may be used to estimate a location of the external aggression.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 22, 2020
    Assignee: SubCom, LLC
    Inventor: Neal S. Bergano
  • Publication number: 20200389230
    Abstract: A novel system and apparatus for detecting and locating an external aggression on at least one optical cable of an optical communication system is provided. For example, a signal from a transmitter may be received and analysis may be performed to recover a state-of-polarization (SOP) associated with the signal. A first rapid polarization change that occurs may be identified, which may indicate that an external aggression has occurred on the at least one optical cable. A time offset between the first rapid polarization change and a second rapid polarization change may be used to estimate a location of the external aggression.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 10, 2020
    Applicant: SubCom, LLC
    Inventor: Neal S. Bergano
  • Patent number: 10454611
    Abstract: This spatial division multiplexing (SDM) in power-limited optical communication systems. In general, an SDM optical transmission system may be configured to increase data capacity over the data capacity of a non-SDM optical transmission system while maintaining power consumption at or below that of the existing non-SDM optical transmission system. To realize such an improvement in performance without increasing power consumption, an example SDM optical transmission may be constructed by reducing system bandwidth, reducing and/or altering equipment for filtering, reducing optical amplifier spacing, reducing operational amplifier power consumption, etc. In this manner, increased data transmission performance may be realized even where available power may be strictly limited.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: October 22, 2019
    Assignee: Subcom, LLC
    Inventors: Alexei Pilipetskii, Oleg V. Sinkin, Georg Mohs, Hussam G. Batshon, Neal S. Bergano
  • Publication number: 20170063467
    Abstract: This spatial division multiplexing (SDM) in power-limited optical communication systems. In general, an SDM optical transmission system may be configured to increase data capacity over the data capacity of a non-SDM optical transmission system while maintaining power consumption at or below that of the existing non-SDM optical transmission system. To realize such an improvement in performance without increasing power consumption, an example SDM optical transmission may be constructed by reducing system bandwidth, reducing and/or altering equipment for filtering, reducing optical amplifier spacing, reducing operational amplifier power consumption, etc. In this manner, increased data transmission performance may be realized even where available power may be strictly limited.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Inventors: Alexei Pilipetskii, Oleg V. Sinkin, Georg Mohs, Hussam G. Batshon, Neal S. Bergano
  • Patent number: 9503197
    Abstract: This spatial division multiplexing (SDM) in power-limited optical communication systems. In general, an SDM optical transmission system may be configured to increase data capacity over the data capacity of a non-SDM optical transmission system while maintaining power consumption at or below that of the existing non-SDM optical transmission system. To realize such an improvement in performance without increasing power consumption, an example SDM optical transmission may be constructed by reducing system bandwidth, reducing and/or altering equipment for filtering, reducing optical amplifier spacing, reducing operational amplifier power consumption, etc. In this manner, increased data transmission performance may be realized even where available power may be strictly limited.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: November 22, 2016
    Assignee: TYCO ELECTRONICS SUBSEA COMMUNICATIONS LLC
    Inventors: Alexei Pilipetskii, Oleg V. Sinkin, Georg Mohs, Hussam G. Batshon, Neal S. Bergano
  • Publication number: 20080131142
    Abstract: A method and apparatus is provided that yields improved performance of both single channel and WDM long-distance optical transmission systems by synchronously modulating of the transmitted signal's amplitude. An amplitude modulator receives an optical signal onto which data has been modulated at a predetermined frequency. The modulator re-modulates the amplitude of the optical signal in a continues fashion with a waveform that is periodic, whose fundamental frequency is equal to the same predetermined frequency at which the data is modulated onto the optical signal. The resulting signal (which is neither a pure NRZ or RZ signal) is more tolerant to the distortions usually found in lightwave transmission systems, thus giving superior transmission performance.
    Type: Application
    Filed: October 23, 2007
    Publication date: June 5, 2008
    Applicant: TYCO TELECOMMUNICATIONS (US) INC.
    Inventor: Neal S. Bergano
  • Patent number: 7373040
    Abstract: A WDM optical transmission system and method uses slope compensation at the transmit terminal and/or the receive terminal. The system and method may be used with modulation formats with a short pulse width and a broad optical spectrum.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: May 13, 2008
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Jin-Xing Cai, Dmitri Foursa, Carl R. Davidson, Alexei N. Pilipetskii, Morten Nissov, Neal S. Bergano
  • Patent number: 7336908
    Abstract: An optical communication system configured to operate with optical signals at lower signal to noise ratios than previously contemplated. The communication system includes a receiver having an optical pre-processor coupled between a demultiplexer and a detector. The optical pre-processor includes either an optical polarization section having a polarization rotator and an optical polarizer, a phase modulation section that includes a phase modulator and a dispersion element and a clock recovery circuit, or an amplitude modulation section that includes an amplitude modulator clock recovery circuit and a spectral shaping filter.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: February 26, 2008
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Neal S. Bergano, Alexei N. Pilipetskii, M. Imran Hayee
  • Publication number: 20070274728
    Abstract: An optical communication system and method may be configured to operate with optical signals having reduced channel spacing. The system may transmit optical signals on a plurality of optical channels with a pair-wise orthogonal relationship such that a first subset of channels has a first polarization state and a second subset of channels has a second polarization state. The channels may be spaced such that there is no overlap of modulation sidebands associated with channels in each of the polarization states. When receiving the optical signals, the orthogonal channels adjacent to a selected channel of interest may be nulled.
    Type: Application
    Filed: May 26, 2006
    Publication date: November 29, 2007
    Inventors: Neal S. Bergano, Chien-Jen Chen, Carl R. Davidson
  • Patent number: 7295728
    Abstract: A WDM optical transmission system and method uses slope compensation at the transmit terminal and/or the receive terminal. The system and method may be used with modulation formats with a short pulse width and a broad optical spectrum.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: November 13, 2007
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Jin-Xing Cai, Dmitri Foursa, Carl R. Davidson, Alexei N. Pilipetskii, Morten Nissov, Neal S. Bergano
  • Patent number: 7292793
    Abstract: A method and apparatus is provided that yields improved performance of both single channel and WDM long-distance optical transmission systems by synchronously modulating of the transmitted signal's amplitude. An amplitude modulator receives an optical signal onto which data has been modulated at a predetermined frequency. The modulator re-modulates the amplitude of the optical signal in a continuous fashion with a waveform that is periodic, whose fundamental frequency is equal to the same predetermined frequency at which the data is modulated onto the optical signal. The resulting signal (which is neither a pure NRZ or RZ signal) is more tolerant to the distortions usually found in lightwave transmission systems, thus giving superior transmission performance.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: November 6, 2007
    Assignee: Tyco Telecommunications (US) Inc.
    Inventor: Neal S. Bergano
  • Publication number: 20070206960
    Abstract: An apparatus, system and method wherein a multi-level data modulation format, such as DQPSK, is combined with symbol rate synchronous amplitude, phase, and/or polarization modulation.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 6, 2007
    Applicant: TYCO TELECOMMUNICATIONS (US) INC.
    Inventors: Morten Nissov, Alexei N. Pilipetskii, Jin-Xing Cai, Neal S. Bergano
  • Patent number: 7203429
    Abstract: An optical communication system configured to operate with optical signals at lower signal to noise ratios than previously contemplated. The communication system includes a receiver having an optical pre-processor coupled between a demultiplexer and a detector. The optical pre-processor includes either an optical polarization section having a polarization rotator and an optical polarizer, a phase modulation section that includes a phase modulator and a dispersion element and a clock recovery circuit, or an amplitude modulation section that includes an amplitude modulator clock recovery circuit and a spectral shaping filter.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: April 10, 2007
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Neal S. Bergano, Alexei N. Pilipetskii, M. Imran Hayee
  • Patent number: 7187860
    Abstract: The position and amount of localized polarization dependent anomalies such as polarization mode dispersion and/or polarization dependent loss may be measured by applying a polarization modulated probe signal to an optical transmission line. The polarization modulated probe signal is returned via optical feedback paths positioned along the line, and is detected by a probe signal receiver to identify the position and strength of the anomaly.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: March 6, 2007
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Neal S. Bergano, Cleo D. Anderson, William W. Patterson, Richard L. Maybach
  • Publication number: 20040161245
    Abstract: A method and apparatus for placing synchronous amplitude modulation onto an optical data signal. An amplitude modulator imparts periodic intensity modulation to an optical signal on which data has been, or will be, modulated. A phase modulator may also be provided to impart synchronous phase modulation to the optical signal, and a polarization modulator may be provided to impart polarization modulation.
    Type: Application
    Filed: February 18, 2004
    Publication date: August 19, 2004
    Inventor: Neal S. Bergano
  • Patent number: 6744992
    Abstract: A method and apparatus is provided that yields improved performance of both single channel and WDM long-distance optical transmission systems by synchronously modulating of the transmitted signal's amplitude. An amplitude modulator receives an optical signal onto which data has been modulated at a predetermined frequency. The modulator re-modulates the amplitude of the optical signal in a continues fashion with a waveform that is periodic, whose fundamental frequency is equal to the same predetermined frequency at which the data is modulated onto the optical signal. The resulting signal (which is neither a pure NRZ or RZ signal) is more tolerant to the distortions usually found in lightwave transmission systems, thus giving superior transmission performance.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: June 1, 2004
    Assignee: Tyco Telecommunications (US) Inc.
    Inventor: Neal S. Bergano
  • Publication number: 20040086281
    Abstract: A method and apparatus is provided that yields improved performance of both single channel and WDM long-distance optical transmission systems by synchronously modulating of the transmitted signal's amplitude. An amplitude modulator receives an optical signal onto which data has been modulated at a predetermined frequency. The modulator re-modulates the amplitude of the optical signal in a continues fashion with a waveform that is periodic, whose fundamental frequency is equal to the same predetermined frequency at which the data is modulated onto the optical signal. The resulting signal (which is neither a pure NRZ or RZ signal) is more tolerant to the distortions usually found in lightwave transmission systems, thus giving superior transmission performance.
    Type: Application
    Filed: October 20, 2003
    Publication date: May 6, 2004
    Inventor: Neal S. Bergano
  • Publication number: 20030118350
    Abstract: A method and apparatus is provided that yields improved performance of both single channel and WDM long-distance optical transmission systems by synchronously modulating of the transmitted signal's amplitude. An amplitude modulator receives an optical signal onto which data has been modulated at a predetermined frequency. The modulator re-modulates the amplitude of the optical signal in a continues fashion with a waveform that is periodic, whose fundamental frequency is equal to the same predetermined frequency at which the data is modulated onto the optical signal. The resulting signal (which is neither a pure NRZ or RZ signal) is more tolerant to the distortions usually found in lightwave transmission systems, thus giving superior transmission performance.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 26, 2003
    Inventor: Neal S. Bergano
  • Patent number: 6556326
    Abstract: A method and apparatus is provided that yields improved performance of both single channel and WDM long-distance optical transmission systems by synchronously modulating of the transmitted signal's amplitude. An amplitude modulator receives an optical signal onto which data has been modulated at a predetermined frequency. The modulator re-modulates the amplitude of the optical signal in a continues fashion with a waveform that is periodic, whose fundamental frequency is equal to the same predetermined frequency at which the data is modulated onto the optical signal. The resulting signal (which is neither a pure NRZ or RZ signal) is more tolerant to the distortions usually found in lightwave transmission systems, thus giving superior transmission performance.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: April 29, 2003
    Assignee: Tyco Telecommunications (US) Inc.
    Inventor: Neal S. Bergano
  • Patent number: RE38289
    Abstract: A method and apparatus is provided for managing dispersion in a WDM optical transmission system so that transmission performance is improved. The usable optical bandwidth of the transmission system is divided into sub-bands that individually undergo dispersion compensation before being re-combined. Accordingly, in comparison to known dispersion mapping techniques, more WDM data channels reside near a wavelength corresponding to the average zero dispersion wavelength.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: October 28, 2003
    Assignee: Tyco Telecommunications (US) Inc.
    Inventor: Neal S. Bergano