Patents by Inventor Neal V. Huynh

Neal V. Huynh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11897611
    Abstract: Distributed trailing edge actuation systems and methods for aircraft are described herein. An example aircraft includes a wing, a flap coupled to the wing, the flap movable between a stowed position and a deployed position, and a distributed trailing edge (DTE) actuation system including a flap actuator coupled to the wing to move the flap. The flap actuator includes an integrated hydraulic powered actuator and electric powered actuator. The flap actuator is operable in a hydraulic powered mode in which the hydraulic powered actuator is activated to move the flap, an electric powered mode in which the electric powered actuator is activated to move the flap, and a hybrid mode in which the hydraulic powered actuator and the electric powered actuator are activated simultaneously to move the flap.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: February 13, 2024
    Assignee: The Boeing Company
    Inventor: Neal V. Huynh
  • Patent number: 11673646
    Abstract: An example aircraft disclosed herein includes a wing, a spoiler rotatably coupled to the wing, the spoiler movable between a cruise position and an upward position and between the cruise position and a droop position, and a spoiler actuation system coupled to a hydraulic system of the aircraft, the spoiler actuation system including a first piston and a second piston, a rack coupled between the first piston and the second piston, the rack movable between a first position and a second position, a pinion coupled to the rack, the pinion to rotate between a third position and a fourth position when the rack moves between the first position and the second position, a first crank arm coupled to the pinion, the first crank arm to rotate with the pinion between the third position and the fourth position, and a second crank arm coupled to the first crank arm and to the spoiler, the second crank arm to move the spoiler between the cruise position and the upward position when the first crank arm rotates between the thir
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: June 13, 2023
    Assignee: The Boeing Company
    Inventor: Neal V. Huynh
  • Publication number: 20220324549
    Abstract: An example aircraft disclosed herein includes a wing, a spoiler rotatably coupled to the wing, the spoiler movable between a cruise position and an upward position and between the cruise position and a droop position, and a spoiler actuation system coupled to a hydraulic system of the aircraft, the spoiler actuation system including a first piston and a second piston, a rack coupled between the first piston and the second piston, the rack movable between a first position and a second position, a pinion coupled to the rack, the pinion to rotate between a third position and a fourth position when the rack moves between the first position and the second position, a first crank arm coupled to the pinion, the first crank arm to rotate with the pinion between the third position and the fourth position, and a second crank arm coupled to the first crank arm and to the spoiler, the second crank arm to move the spoiler between the cruise position and the upward position when the first crank arm rotates between the thir
    Type: Application
    Filed: November 15, 2021
    Publication date: October 13, 2022
    Inventor: Neal V. Huynh
  • Publication number: 20220212782
    Abstract: Distributed trailing edge actuation systems and methods for aircraft are described herein. An example aircraft includes a wing, a flap coupled to the wing, the flap movable between a stowed position and a deployed position, and a distributed trailing edge (DTE) actuation system including a flap actuator coupled to the wing to move the flap. The flap actuator includes an integrated hydraulic powered actuator and electric powered actuator. The flap actuator is operable in a hydraulic powered mode in which the hydraulic powered actuator is activated to move the flap, an electric powered mode in which the electric powered actuator is activated to move the flap, and a hybrid mode in which the hydraulic powered actuator and the electric powered actuator are activated simultaneously to move the flap.
    Type: Application
    Filed: August 20, 2021
    Publication date: July 7, 2022
    Inventor: Neal V. Huynh
  • Patent number: 11027824
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap and first and second actuators. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The first and second actuators are configured to move the flap relative to the fixed trailing edge. The first actuator is operatively coupled to the second actuator via a shaft. The first actuator is actuatable via pressurized hydraulic fluid to be supplied from a hydraulic system of the aircraft to the first actuator via a hydraulic module operatively coupled to the first actuator. The first actuator is configured to control movement of the second actuator via the shaft when the hydraulic system and the hydraulic module are functional. The second actuator is actuatable via an electric motor of the second actuator. The electric motor is selectively connectable to an electrical system of the aircraft.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: June 8, 2021
    Assignee: THE BOEING COMPANY
    Inventor: Neal V. Huynh
  • Patent number: 10926869
    Abstract: Systems and methods for jam mitigation in aircraft fly-by-wire systems are described herein. An example method of controlling an aircraft with a fly-by-wire system includes determining a current position of a pilot cockpit controller of the fly-by-wire system, determining an amount of pilot input force applied to the pilot cockpit controller, determining an expected pilot input force value that corresponds to the current position of the pilot cockpit controller, and, if the amount of pilot input force applied exceeds the expected pilot input force value by a threshold, generating a pilot command based on the amount of pilot input force applied and not the current position of the pilot cockpit controller.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: February 23, 2021
    Assignee: The Boeing Company
    Inventors: Neal V. Huynh, Joseph E. Elliott
  • Patent number: 10926867
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap and first and second actuators. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The first and second actuators are configured to move the flap relative to the fixed trailing edge. The first actuator is actuatable via pressurized hydraulic fluid to be supplied from a hydraulic system of the aircraft to the first actuator via a hydraulic module operatively coupled to the first actuator. The first actuator is operatively coupled to a first shaft. The second actuator is actuatable via an electric motor of the second actuator. The electric motor is operatively coupled to an electrical system of the aircraft. The second actuator is operatively coupled to a second shaft. The first and second shafts are selectively operatively couplable via a clutch operatively positioned between the first and second shafts.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: February 23, 2021
    Assignee: THE BOEING COMPANY
    Inventor: Neal V. Huynh
  • Patent number: 10882603
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap, an actuator, a first hydraulic module, and a second hydraulic module. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The actuator is to move the flap relative to the fixed trailing edge. The first hydraulic module is located at the actuator. The second hydraulic module is located remotely from the first hydraulic module and includes a local power unit. The actuator is hydraulically drivable via first pressurized hydraulic fluid to be supplied from a hydraulic system of the aircraft to the actuator via the second hydraulic module and further via the first hydraulic module. The actuator is also hydraulically drivable via second pressurized hydraulic fluid to be supplied from the local power unit to the actuator via the second hydraulic module and further via the first hydraulic module.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: January 5, 2021
    Assignee: THE BOEING COMPANY
    Inventor: Neal V. Huynh
  • Patent number: 10882604
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap and an actuator. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The actuator is to move the flap relative to the fixed trailing edge. The actuator is hydraulically drivable via first pressurized hydraulic fluid to be supplied by a hydraulic system of the aircraft. The actuator is also hydraulically drivable via second pressurized hydraulic fluid to be supplied by a local power unit. The local power unit is selectively connectable to an electrical system of the aircraft. The electrical system is to power the local power unit to supply the second pressurized hydraulic fluid.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: January 5, 2021
    Assignee: THE BOEING COMPANY
    Inventor: Neal V. Huynh
  • Patent number: 10829203
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap, a first actuator, a second actuator, and a shaft. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The first actuator is to move the flap relative to the fixed trailing edge. The first actuator is actuatable via pressurized hydraulic fluid to be supplied from a hydraulic system of the aircraft to the first actuator via a hydraulic module operatively coupled to the first actuator. The second actuator is to move the flap relative to the fixed trailing edge. The second actuator is actuatable via an electric motor of the second actuator connected to a first electrical system of the aircraft. The shaft operatively couples the first actuator to the second actuator. The first and second actuators are actuatable via the shaft.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 10, 2020
    Assignee: THE BOEING COMPANY
    Inventor: Neal V. Huynh
  • Publication number: 20200172230
    Abstract: Systems and methods for jam mitigation in aircraft fly-by-wire systems are described herein. An example method of controlling an aircraft with a fly-by-wire system includes determining a current position of a pilot cockpit controller of the fly-by-wire system, determining an amount of pilot input force applied to the pilot cockpit controller, determining an expected pilot input force value that corresponds to the current position of the pilot cockpit controller, and, if the amount of pilot input force applied exceeds the expected pilot input force value by a threshold, generating a pilot command based on the amount of pilot input force applied and not the current position of the pilot cockpit controller.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 4, 2020
    Inventors: Neal V. Huynh, Joseph E. Elliott
  • Patent number: 10600259
    Abstract: Methods and apparatus for operating flight control systems of aircrafts are disclosed. An example apparatus includes a flight control system including a processor to: based on data from first and second sensors, determine first and second values; based on the first and second values, determine a location of a jam in the flight control system, the location of the jam being determined based on a summation of the first and second values.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 24, 2020
    Assignee: The Boeing Company
    Inventors: Neal V. Huynh, Robert S. Eick, Thomas G. Heineman, Michael D. Bills, Patrick M. Fahey, John C. Nicholas
  • Publication number: 20200079497
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap and first and second actuators. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The first and second actuators are configured to move the flap relative to the fixed trailing edge. The first actuator is actuatable via pressurized hydraulic fluid to be supplied from a hydraulic system of the aircraft to the first actuator via a hydraulic module operatively coupled to the first actuator. The first actuator is operatively coupled to a first shaft. The second actuator is actuatable via an electric motor of the second actuator. The electric motor is operatively coupled to an electrical system of the aircraft. The second actuator is operatively coupled to a second shaft. The first and second shafts are selectively operatively couplable via a clutch operatively positioned between the first and second shafts.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 12, 2020
    Inventor: Neal V. Huynh
  • Publication number: 20200070959
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap and first and second actuators. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The first and second actuators are configured to move the flap relative to the fixed trailing edge. The first actuator is operatively coupled to the second actuator via a shaft. The first actuator is actuatable via pressurized hydraulic fluid to be supplied from a hydraulic system of the aircraft to the first actuator via a hydraulic module operatively coupled to the first actuator. The first actuator is configured to control movement of the second actuator via the shaft when the hydraulic system and the hydraulic module are functional. The second actuator is actuatable via an electric motor of the second actuator. The electric motor is selectively connectable to an electrical system of the aircraft.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 5, 2020
    Inventor: Neal V. Huynh
  • Publication number: 20190308719
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap, a first actuator, a second actuator, and a shaft. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The first actuator is to move the flap relative to the fixed trailing edge. The first actuator is actuatable via pressurized hydraulic fluid to be supplied from a hydraulic system of the aircraft to the first actuator via a hydraulic module operatively coupled to the first actuator. The second actuator is to move the flap relative to the fixed trailing edge. The second actuator is actuatable via an electric motor of the second actuator connected to a first electrical system of the aircraft. The shaft operatively couples the first actuator to the second actuator. The first and second actuators are actuatable via the shaft.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventor: Neal V. Huynh
  • Publication number: 20190291850
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap, an actuator, a first hydraulic module, and a second hydraulic module. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The actuator is to move the flap relative to the fixed trailing edge. The first hydraulic module is located at the actuator. The second hydraulic module is located remotely from the first hydraulic module and includes a local power unit. The actuator is hydraulically drivable via first pressurized hydraulic fluid to be supplied from a hydraulic system of the aircraft to the actuator via the second hydraulic module and further via the first hydraulic module. The actuator is also hydraulically drivable via second pressurized hydraulic fluid to be supplied from the local power unit to the actuator via the second hydraulic module and further via the first hydraulic module.
    Type: Application
    Filed: March 20, 2018
    Publication date: September 26, 2019
    Inventor: Neal V. Huynh
  • Publication number: 20190217944
    Abstract: Distributed trailing edge wing flap systems are described. An example wing flap system for an aircraft includes a flap and an actuator. The flap is movable between a deployed position and a retracted position relative to a fixed trailing edge of a wing of the aircraft. The actuator is to move the flap relative to the fixed trailing edge. The actuator is hydraulically drivable via first pressurized hydraulic fluid to be supplied by a hydraulic system of the aircraft. The actuator is also hydraulically drivable via second pressurized hydraulic fluid to be supplied by a local power unit. The local power unit is selectively connectable to an electrical system of the aircraft. The electrical system is to power the local power unit to supply the second pressurized hydraulic fluid.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 18, 2019
    Inventor: Neal V. Huynh
  • Patent number: 10343767
    Abstract: A system of an aircraft includes a system pump and a booster pump. The system pump is configured to provide hydraulic fluid to the hydraulic system at a first working pressure. The booster pump is configured to supply hydraulic fluid to at least one boostable actuator at a second working pressure higher than the first working pressure. The boostable actuator is operatively coupled to and configured to actuate at least one flight control surface of an aircraft. The booster pump is configured as a high-pressure accumulator and an accumulator energizer, or as a hydraulic actuator pump and a variable speed motor.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: Patrick J. McCormick, Neal V. Huynh, Timothy G. Overton, Alan Marx
  • Publication number: 20190112031
    Abstract: A system of an aircraft includes a system pump and a booster pump. The system pump is configured to provide hydraulic fluid to the hydraulic system at a first working pressure. The booster pump is configured to supply hydraulic fluid to at least one boostable actuator at a second working pressure higher than the first working pressure. The boostable actuator is operatively coupled to and configured to actuate at least one flight control surface of an aircraft. The booster pump is configured as a high-pressure accumulator and an accumulator energizer, or as a hydraulic actuator pump and a variable speed motor.
    Type: Application
    Filed: December 19, 2018
    Publication date: April 18, 2019
    Inventors: Patrick J. McCormick, Neal V. Huynh, Timothy G. Overton, Alan Marx
  • Patent number: 10196131
    Abstract: A hydraulic system of an aircraft may include a system pump configured to provide hydraulic fluid to the hydraulic system at a first working pressure. The hydraulic system may further include a booster pump configured to supply hydraulic fluid to at least one boostable actuator at a second working pressure higher than the first working pressure. The boostable actuator may be operatively coupled to and configured to actuate at least one flight control surface of an aircraft.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: February 5, 2019
    Assignee: The Boeing Company
    Inventors: Patrick J. McCormick, Neal V. Huynh, Timothy G. Overton, Alan Marx