Patents by Inventor Neelakantan Saikrishnan

Neelakantan Saikrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200093589
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular to a side delivered large diameter, low profile transcatheter prosthetic valve having a compressible tubular frame having a side wall and a central axial lumen, said tubular frame having a height of 8-20 mm and a diameter of 40-80 mm, an atrial sealing cuff, a subannular anchoring component, and aa flow control component comprising a leaflet structure, wherein the valve is side-delivered longitudinally to a mitral valve annulus or tricuspid valve annulus of a patient using a 22-34 Fr delivery catheter.
    Type: Application
    Filed: June 10, 2019
    Publication date: March 26, 2020
    Inventors: MARK CHRISTIANSON, ROBERT VIDLUND, NEELAKANTAN SAIKRISHNAN
  • Patent number: 10595994
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular to a side delivered large diameter, low profile transcatheter prosthetic valve having a compressible tubular frame having a side wall and a central axial lumen, said tubular frame having a height of 8-20 mm and a diameter of 40-80 mm, an atrial sealing cuff, a subannular anchoring component, and aa flow control component comprising a leaflet structure, wherein the valve is side-delivered longitudinally to a mitral valve annulus or tricuspid valve annulus of a patient using a 22-34 Fr delivery catheter.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 24, 2020
    Assignee: VDYNE, LLC
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan
  • Publication number: 20200085576
    Abstract: An apparatus for stabilizing a prosthetic heart valve within an atrioventricular valve includes a collapsible and expandable stent having an inflow end, an outflow end, and struts forming a plurality of cells connected to one another in a plurality of annular rows around the stent. The stent further includes a collapsible and expandable valve assembly secured to the stent. The valve assembly includes a cuff and a plurality of leaflets having an open configuration and a closed configuration. A cord connected to the stent includes an attachment device adapted to couple the stent to heart tissue of a patient. A method of stabilizing a prosthetic heart valve within an atrioventricular valve annulus is also described.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 19, 2020
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Jay Reimer, Brandon Moore, Chad Joshua Green, Paul E. Ashworth, Neelakantan Saikrishnan
  • Patent number: 10582882
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: March 10, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Patent number: 10537287
    Abstract: Prosthetic heart devices may be implanted into the heart with a sensor coupled to the device, the sensor being configured to measure physiological data, such as blood pressure, in the heart. Devices that may employ such sensors include prosthetic heart valves and occlusion devices, although sensor systems may be deployed in the heart separate from other implantable devices. The sensors may include a body with different configurations for attaching to the implantable device, such as apertures for sutures or fingers for connecting to structures of the implantable device. The sensors may provide data that allow a determination of aortic regurgitation or other information indicative of function of the implantable device and patient health during and after implantation of the device.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: January 21, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Mina S. Fahim, Steven Frederick Anderl, Jason White, Paul E. Ashworth, Morgan Low, Loell Boyce Moon, Neelakantan Saikrishnan
  • Publication number: 20190321170
    Abstract: A surgical heart valve includes a non-collapsible frame having features that enable the frame to expand from an initial condition having a first diameter to an expanded condition having a second diameter larger than the first diameter after the valve has been implanted within a patient. The frame may include members that prevent the unintended expansion of the frame, such as during implantation, and members that prevent the over-expansion of the frame. The surgical heart valve further includes a valve assembly connected to the frame and including a plurality of leaflets.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 24, 2019
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Chad Joshua Green, Neelakantan Saikrishnan, Paul E. Ashworth, Scott R. Lien
  • Patent number: 10433791
    Abstract: A prosthetic device for implanting in a patient's heart includes (i) a therapeutic device capable of restoring function to a native heart valve; and (ii) at least one sensor including a body, an inductor coil disposed within the body, and a capacitor in communication with the inductor coil, the at least one sensor being coupled to the therapeutic device, and being configured to monitor proper function of the therapeutic device within the patient's heart.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: October 8, 2019
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Mina S. Fahim, Loell Boyce Moon, Paul E. Ashworth, Neelakantan Saikrishnan, Steven Frederick Anderl
  • Patent number: 10321995
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular an orthogonally delivered transcatheter prosthetic valve having a tubular frame with a flow control component mounted within the tubular frame and configured to permit blood flow in a first direction through an inflow end of the valve and block blood flow in a second direction, opposite the first direction, through an outflow end of the valve, wherein the valve is compressible to a compressed configuration for introduction into the body using a delivery catheter for implanting at a desired location in the body, said compressed configuration having a long-axis oriented at an intersecting angle of between 45-135 degrees to the first direction, and expandable to an expanded configuration having a long-axis oriented at an intersecting angle of between 45-135 degrees to the first direction, wherein the long-axis of the compressed configuration of the valve is substantially parallel to a length-wise cylindrical axis of
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: June 18, 2019
    Assignee: VDYNE, LLC
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, David Holtan, Craig Ekvall
  • Publication number: 20190099265
    Abstract: A prosthetic heart valve for replacing a native valve includes a stent extending between an inflow end and an outflow end, and a valve assembly disposed within the stent. The prosthetic heart valve may include a supra-annular feature configured to anchor and seal the prosthetic valve above the native valve annulus and a sub-annular feature configured to anchor and seal the prosthetic valve below the native valve annulus. Each of the sub-annular feature and the supra-annular feature may be a sealing ring or a strut that extends radially outward from the stent. The prosthetic heart valve may be implanted in the patient via a sutureless approach and provide anchoring in a variety of patient populations, including those with resected native valve leaflets.
    Type: Application
    Filed: June 30, 2016
    Publication date: April 4, 2019
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Chad Joshua Green, Neelakantan Saikrishnan
  • Publication number: 20180271445
    Abstract: A sensor implantation assembly is disclosed that includes a tissue puncture closure device. The tissue puncture closure device has a proximal end portion and a distal end portion and a suture extending from the proximal end portion to the distal end portion. A suture anchor assembly is also included that is insertable through a tissue wall puncture. The suture anchor assembly is attached to the suture at the distal end portion of the closure device and has a diagnostic sensor. A sealing pad is positioned around the suture at the distal end portion and is slidable along the suture. The diagnostic sensor may be placed within a tissue wall to gather diagnostic information such as pressure measurements at or near the site of the tissue puncture closure.
    Type: Application
    Filed: October 12, 2016
    Publication date: September 27, 2018
    Applicant: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: Peter N. BRAIDO, Neelakantan SAIKRISHNAN, Mina S. FAHIM
  • Publication number: 20180078177
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 22, 2018
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Publication number: 20180042555
    Abstract: Prosthetic heart devices may be implanted into the heart with a sensor coupled to the device, the sensor being configured to measure physiological data, such as blood pressure, in the heart. Devices that may employ such sensors include prosthetic heart valves and occlusion devices, although sensor systems may be deployed in the heart separate from other implantable devices. The sensors may include a body with different configurations for attaching to the implantable device, such as apertures for sutures or fingers for connecting to structures of the implantable device. The sensors may provide data that allow a determination of aortic regurgitation or other information indicative of function of the implantable device and patient health during and after implantation of the device.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 15, 2018
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Mina S. Fahim, Steven Frederick Anderl, Jason White, Paul E. Ashworth, Morgan Low, Loell Boyce Moon, Neelakantan Saikrishnan
  • Patent number: 9867556
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: January 16, 2018
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Patent number: 9808201
    Abstract: Prosthetic heart devices may be implanted into the heart with a sensor coupled to the device, the sensor being configured to measure physiological data, such as blood pressure, in the heart. Devices that may employ such sensors include prosthetic heart valves and occlusion devices, although sensor systems may be deployed in the heart separate from other implantable devices. The sensors may include a body with different configurations for attaching to the implantable device, such as apertures for sutures or fingers for connecting to structures of the implantable device. The sensors may provide data that allow a determination of aortic regurgitation or other information indicative of function of the implantable device and patient health during and after implantation of the device.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: November 7, 2017
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Mina S. Fahim, Steven Frederick Anderl, Jason White, Paul E. Ashworth, Morgan Low, Loell Boyce Moon, Neelakantan Saikrishnan
  • Patent number: 9737264
    Abstract: An implantable device system includes an implantable device, such as an annuloplasty ring, for controlling at least a shape and/or size of a heart valve annulus. The implantable device includes an arcuate body and an adjustment system configured to adjust the shape and/or size of the arcuate body. An adjustment tool is configured to be coupled to the adjustment system so that the adjustment tool can be used to activate and control adjustment of the arcuate body. A sensor system is configured to be coupled to the implantable device. The sensor system includes a first sensor configured to measure physiological data at an inflow portion of the valve annulus when the implantable device is implanted into the valve annulus, and a second sensor configured to measure physiological data at an outflow portion of the valve annulus when the implantable device is implanted into the valve annulus.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: August 22, 2017
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Chad Joshua Green, Neelakantan Saikrishnan, Mina S. Fahim
  • Publication number: 20160296333
    Abstract: A system for determining the dimensions of a native valve annulus may include a sensing catheter, a transmitter, and a computing device. The sensing catheter may include a shaft extending in a longitudinal direction; a plurality of splines attached to the shaft, the splines having an expanded condition spaced radially outward from the shaft; and at least one sensing coil located on each of the splines. The transmitter may generate a magnetic field to induce a potential in each of the sensing coils, and the computing device may identify the positions of the sensing coils based on the induced potentials.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 13, 2016
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Neelakantan Saikrishnan, John Hauck, Riki Thao
  • Publication number: 20160045165
    Abstract: Prosthetic heart devices may be implanted into the heart with a sensor coupled to the device, the sensor being configured to measure physiological data, such as blood pressure, in the heart. Devices that may employ such sensors include prosthetic heart valves and occlusion devices, although sensor systems may be deployed in the heart separate from other implantable devices. The sensors may include a body with different configurations for attaching to the implantable device, such as apertures for sutures or fingers for connecting to structures of the implantable device. The sensors may provide data that allow a determination of aortic regurgitation or other information indicative of function of the implantable device and patient health during and after implantation of the device.
    Type: Application
    Filed: August 13, 2015
    Publication date: February 18, 2016
    Inventors: Peter N. Braido, Mina S. Fahim, Steven Frederick Anderl, Jason White, Paul E. Ashworth, Morgan Low, Loell Boyce Moon, Neelakantan Saikrishnan
  • Publication number: 20160045316
    Abstract: A prosthetic device for implanting in a patient's heart includes (i) a therapeutic device capable of restoring function to a native heart valve; and (ii) at least one sensor including a body, an inductor coil disposed within the body, and a capacitor in communication with the inductor coil, the at least one sensor being coupled to the therapeutic device, and being configured to monitor proper function of the therapeutic device within the patient's heart.
    Type: Application
    Filed: August 13, 2015
    Publication date: February 18, 2016
    Applicant: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: Peter N. Braido, Mina S. Fahim, Loell Boyce Moon, Paul E. Ashworth, Neelakantan Saikrishnan, Steven Frederick Anderl
  • Publication number: 20160045312
    Abstract: An implantable device system includes an implantable device, such as an annuloplasty ring, for controlling at least a shape and/or size of a heart valve annulus. The implantable device includes an arcuate body and an adjustment system configured to adjust the shape and/or size of the arcuate body. An adjustment tool is configured to be coupled to the adjustment system so that the adjustment tool can be used to activate and control adjustment of the arcuate body. A sensor system is configured to be coupled to the implantable device. The sensor system includes a first sensor configured to measure physiological data at an inflow portion of the valve annulus when the implantable device is implanted into the valve annulus, and a second sensor configured to measure physiological data at an outflow portion of the valve annulus when the implantable device is implanted into the valve annulus.
    Type: Application
    Filed: August 13, 2015
    Publication date: February 18, 2016
    Inventors: Peter N. Braido, Chad Joshua Green, Neelakantan Saikrishnan, Mina S. Fahim
  • Publication number: 20150223729
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Application
    Filed: February 6, 2015
    Publication date: August 13, 2015
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao