Patents by Inventor Neeraj Shrivastava
Neeraj Shrivastava has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250105854Abstract: In described examples, a circuit includes a multiplexer. The multiplexer receives an input voltage and a calibration signal. An analog-to-digital converter (ADC) is coupled to the multiplexer and generates an output code in response to the calibration signal. A storage circuit is coupled to the ADC and stores the input code representative of the calibration signal at an address corresponding to the output code. The stored input code includes an index value and a coarse value.Type: ApplicationFiled: December 9, 2024Publication date: March 27, 2025Inventors: Visvesvaraya Appala Pentakota, Srinivas Kumar Reddy Naru, Chirag Shetty, Eeshan Miglani, Neeraj Shrivastava, Narasimhan Rajagopal, Shagun Dusad
-
Patent number: 12224761Abstract: An analog-to-digital converter circuit module utilizing dither to reduce multiplicative noise. A dither generation circuit generates a noise-shaped analog dither signal having lower amplitudes at frequencies below a cutoff frequency than at frequencies above the cutoff frequency. The noise-shaped analog dither signal is added to the input analog signal to be converted and the summed signal applied to an analog-to-digital converter The dither generation circuit may be implemented as an analog dither generator followed by an analog high-pass filter. The dither generation circuit may alternatively be implemented digitally, for example with a digital noise-shaping filter applying a high-pass digital filter to a pseudo-random binary sequence. The digital dither generation circuit may alternatively be implemented by one or more 1-bit sigma-delta modulators, each generating a bit of a digital dither sequence that is converted to analog.Type: GrantFiled: April 26, 2022Date of Patent: February 11, 2025Assignee: Texas Instruments IncorporatedInventors: Nithin Gopinath, Visvesvaraya A. Pentakota, Neeraj Shrivastava, Harshit Moondra
-
Patent number: 12206427Abstract: In described examples, a circuit includes a multiplexer. The multiplexer receives an input voltage and a calibration signal. An analog-to-digital converter (ADC) is coupled to the multiplexer and generates an output code in response to the calibration signal. A storage circuit is coupled to the ADC and stores the input code representative of the calibration signal at an address corresponding to the output code. The stored input code includes an index value and a coarse value.Type: GrantFiled: January 31, 2022Date of Patent: January 21, 2025Assignee: Texas Instruments IncorporatedInventors: Visvesvaraya Appala Pentakota, Srinivas Kumar Reddy Naru, Chirag Shetty, Eeshan Miglani, Neeraj Shrivastava, Narasimhan Rajagopal, Shagun Dusad
-
Publication number: 20250023575Abstract: An analog-to-digital converter (ADC) includes: a time-domain ADC core; and a calibration circuit. The time-domain ADC core includes: a first delay-to-digital stage having a terminal; a second delay-to-digital stage having a terminal; a third delay-to-digital stage having a terminal. The calibration circuitry is coupled to the terminal of the first delay-to-digital stage, the terminal of the second delay-to-digital stage, and the terminal of the third delay-to-digital stage of stages. The calibration circuitry is configured to calibrate the first delay-to-digital stage, the second delay-to-digital stage, and the third delay-to-digital stage based on a zero-crossing calibration and an over-range calibration. The over-range calibration sets a maximum threshold and a minimum threshold for the time-domain ADC relative to a reference voltage.Type: ApplicationFiled: November 30, 2023Publication date: January 16, 2025Inventors: Rishi SOUNDARARAJAN, Visvesvaraya Appala PENTAKOTA, Sai Vikas KANDIMALLA, Neeraj SHRIVASTAVA, Eeshan MIGLANI
-
Publication number: 20240372557Abstract: A circuit includes a nonlinear analog-to-digital converter (ADC) configured to provide a first digital output based on an analog input signal. The circuit also includes a linearization circuit having a lookup table (LUT) memory configured to store initial calibration data. The linearization circuit is coupled to the nonlinear ADC and is configured to: determine updated calibration data based on the initial calibration data; replace the initial calibration data in the LUT memory with the updated calibration data; and provide a second digital output at a linearization circuit output of the linearization circuit based on the first digital output and the updated calibration data.Type: ApplicationFiled: July 15, 2024Publication date: November 7, 2024Inventors: Narasimhan RAJAGOPAL, Nithin GOPINATH, Viswanathan NAGARAJAN, Neeraj SHRIVASTAVA, Visvesvaraya A. PENTAKOTA, Harshit MOONDRA, Abhinav CHANDRA
-
Patent number: 12074607Abstract: A circuit includes a nonlinear analog-to-digital converter (ADC) configured to provide a first digital output based on an analog input signal. The circuit also includes a linearization circuit having a lookup table (LUT) memory configured to store initial calibration data. The linearization circuit is coupled to the nonlinear ADC and is configured to: determine updated calibration data based on the initial calibration data; replace the initial calibration data in the LUT memory with the updated calibration data; and provide a second digital output at a linearization circuit output of the linearization circuit based on the first digital output and the updated calibration data.Type: GrantFiled: May 26, 2022Date of Patent: August 27, 2024Assignee: Texas Instruments IncorporatedInventors: Narasimhan Rajagopal, Nithin Gopinath, Viswanathan Nagarajan, Neeraj Shrivastava, Visvesvaraya A. Pentakota, Harshit Moondra, Abhinav Chandra
-
Patent number: 11881867Abstract: In described examples, a circuit includes a calibration engine. The calibration engine generates multiple input codes. A digital to analog converter (DAC) is coupled to the calibration engine, and generates a first calibration signal in response to a first input code of the multiple input codes. An analog to digital converter (ADC) is coupled to the DAC, and generates multiple raw codes responsive to the first calibration signal. A storage circuit is coupled to the ADC and stores a first output code corresponding to the first input code. The first output code is obtained using the multiple raw codes generated by the ADC.Type: GrantFiled: September 7, 2021Date of Patent: January 23, 2024Assignee: Texas Instruments IncorporatedInventors: Narasimhan Rajagopal, Eeshan Miglani, Chirag Chandrahas Shetty, Neeraj Shrivastava, Shagun Dusad, Srinivas Kumar Reddy Naru, Nithin Gopinath, Charls Babu, Shivam Srivastava, Viswanathan Nagarajan, Jagannathan Venkataraman, Harshit Moondra, Prasanth K, Visvesvaraya Appala Pentakota
-
Publication number: 20230387932Abstract: A circuit includes a nonlinear analog-to-digital converter (ADC) configured to provide a first digital output based on an analog input signal. The circuit also includes a linearization circuit having a lookup table (LUT) memory configured to store initial calibration data. The linearization circuit is coupled to the nonlinear ADC and is configured to: determine updated calibration data based on the initial calibration data; replace the initial calibration data in the LUT memory with the updated calibration data; and provide a second digital output at a linearization circuit output of the linearization circuit based on the first digital output and the updated calibration data.Type: ApplicationFiled: May 26, 2022Publication date: November 30, 2023Inventors: Narasimhan RAJAGOPAL, Nithin GOPINATH, Viswanathan NAGARAJAN, Neeraj SHRIVASTAVA, Visvesvaraya A. PENTAKOTA, Harshit MOONDRA, Abhinav CHANDRA
-
Publication number: 20230344436Abstract: An analog-to-digital converter circuit module utilizing dither to reduce multiplicative noise. A dither generation circuit generates a noise-shaped analog dither signal having lower amplitudes at frequencies below a cutoff frequency than at frequencies above the cutoff frequency. The noise-shaped analog dither signal is added to the input analog signal to be converted and the summed signal applied to an analog-to-digital converter The dither generation circuit may be implemented as an analog dither generator followed by an analog high-pass filter. The dither generation circuit may alternatively be implemented digitally, for example with a digital noise-shaping filter applying a high-pass digital filter to a pseudo-random binary sequence. The digital dither generation circuit may alternatively be implemented by one or more 1-bit sigma-delta modulators, each generating a bit of a digital dither sequence that is converted to analog.Type: ApplicationFiled: April 26, 2022Publication date: October 26, 2023Inventors: Nithin Gopinath, Visvesvaraya A. Pentakota, Neeraj Shrivastava, Harshit Moondra
-
Patent number: 11438001Abstract: A method of using an analog-to-digital converter system includes receiving a sampled voltage corresponding to one of an input voltage and a known voltage, causing preamplifiers to generate output signals based on the sampled voltage, generating first and second signals based on the output signals, causing a delay-resolving delay-to-digital backend to generate a single-bit digital signal representing an order of receipt of the first and second signals, and adjusting one or more of the preamplifiers based on the digital signal. The disclosure also relates to a system which includes a voltage-to-delay frontend and a delay-resolving backend, and to a method which includes causing a delay comparator to generate a single-bit digital signal representing an order of receipt of input signals, causing the comparator to transmit a residue delay signal to a succeeding comparator, and transmitting a signal to adjust one or more of the preamplifiers based on the digital signal.Type: GrantFiled: December 24, 2020Date of Patent: September 6, 2022Assignee: Texas Instruments IncorporatedInventors: Narasimhan Rajagopal, Chirag Chandrahas Shetty, Neeraj Shrivastava, Prasanth K, Eeshan Miglani
-
Publication number: 20220247420Abstract: In described examples, a circuit includes a calibration engine. The calibration engine generates multiple input codes. A digital to analog converter (DAC) is coupled to the calibration engine, and generates a first calibration signal in response to a first input code of the multiple input codes. An analog to digital converter (ADC) is coupled to the DAC, and generates multiple raw codes responsive to the first calibration signal. A storage circuit is coupled to the ADC and stores a first output code corresponding to the first input code. The first output code is obtained using the multiple raw codes generated by the ADC.Type: ApplicationFiled: September 7, 2021Publication date: August 4, 2022Inventors: Narasimhan Rajagopal, Eeshan Miglani, Chirag Chandrahas Shetty, Neeraj Shrivastava, Shagun Dusad, Srinivas Kumar Reddy Naru, Nithin Gopinath, Charls Babu, Shivam Srivastava, Viswanathan Nagarajan, Jagannathan Venkataraman, Harshit Moondra, Prasanth K, Visvesvaraya Appala Pentakota
-
Publication number: 20220247421Abstract: In described examples, a circuit includes a multiplexer. The multiplexer receives an input voltage and a calibration signal. An analog-to-digital converter (ADC) is coupled to the multiplexer and generates an output code in response to the calibration signal. A storage circuit is coupled to the ADC and stores the input code representative of the calibration signal at an address corresponding to the output code. The stored input code includes an index value and a coarse value.Type: ApplicationFiled: January 31, 2022Publication date: August 4, 2022Inventors: Visvesvaraya Appala Pentakota, Srinivas Kumar Reddy Naru, Chirag Shetty, Eeshan Miglani, Neeraj Shrivastava, Narasimhan Rajagopal, Shagun Dusad
-
Publication number: 20220209782Abstract: A method of using an analog-to-digital converter system includes receiving a sampled voltage corresponding to one of an input voltage and a known voltage, causing preamplifiers to generate output signals based on the sampled voltage, generating first and second signals based on the output signals, causing a delay-resolving delay-to-digital backend to generate a single-bit digital signal representing an order of receipt of the first and second signals, and adjusting one or more of the preamplifiers based on the digital signal. The disclosure also relates to a system which includes a voltage-to-delay frontend and a delay-resolving backend, and to a method which includes causing a delay comparator to generate a single-bit digital signal representing an order of receipt of input signals, causing the comparator to transmit a residue delay signal to a succeeding comparator, and transmitting a signal to adjust one or more of the preamplifiers based on the digital signal.Type: ApplicationFiled: December 24, 2020Publication date: June 30, 2022Inventors: Narasimhan RAJAGOPAL, Chirag Chandrahas SHETTY, Neeraj SHRIVASTAVA, Prasanth K, Eeshan MIGLANI
-
Patent number: 11316525Abstract: An analog-to-digital converter system includes a digital-to-analog converter for generating calibration voltages based on digital input codes, and an analog-to-digital converter, connected to the digital-to-analog converter, for receiving the calibration voltages from the digital-to-analog converter, for receiving sampled voltages, for generating digital output codes based on the calibration voltages, and for generating digital output codes based on the sampled voltages. The analog-to-digital converter system may have a lookup table, connected to the analog-to-digital converter, for storing the first digital output codes in association with the digital input codes. A method of calibrating an analog-to-digital converter system is also disclosed.Type: GrantFiled: January 26, 2021Date of Patent: April 26, 2022Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Visvesvaraya Appala Pentakota, Narasimhan Rajagopal, Chirag Chandrahas Shetty, Prasanth K, Neeraj Shrivastava, Eeshan Miglani, Jagannathan Venkataraman
-
Patent number: 11239854Abstract: A non-linearity correction circuit includes a non-linearity coefficient estimation circuit. The non-linearity coefficient estimation circuit includes a data capture circuit, a non-linearity term generation circuit, a time-to-frequency conversion circuit, a bin identification circuit, a residual non-linearity conversion circuit, and a non-linearity coefficient generation circuit. The non-linearity term generation circuit is coupled to the data capture circuit. The time-to-frequency conversion circuit is coupled to the data capture circuit and the non-linearity term generation circuit. The bin identification circuit is coupled to the time-to-frequency conversion circuit. The residual non-linearity conversion circuit is coupled to the bin identification circuit. The non-linearity coefficient generation circuit is coupled to the bin identification circuit and the residual non-linearity conversion circuit.Type: GrantFiled: October 2, 2020Date of Patent: February 1, 2022Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Jawaharlal Tangudu, Pankaj Gupta, Sreenath Narayanan Potty, Ajai Paulose, Chandrasekhar Sriram, Mahesh Ravi Varma, Shabbar Abbasi Vejlani, Neeraj Shrivastava, Himanshu Varshney, Divyeshkumar Mahendrabhai Patel, Raju Kharataram Chaudhari
-
Publication number: 20210105021Abstract: A non-linearity correction circuit includes a non-linearity coefficient estimation circuit. The non-linearity coefficient estimation circuit includes a data capture circuit, a non-linearity term generation circuit, a time-to-frequency conversion circuit, a bin identification circuit, a residual non-linearity conversion circuit, and a non-linearity coefficient generation circuit. The non-linearity term generation circuit is coupled to the data capture circuit. The time-to-frequency conversion circuit is coupled to the data capture circuit and the non-linearity term generation circuit. The bin identification circuit is coupled to the time-to-frequency conversion circuit. The residual non-linearity conversion circuit is coupled to the bin identification circuit. The non-linearity coefficient generation circuit is coupled to the bin identification circuit and the residual non-linearity conversion circuit.Type: ApplicationFiled: October 2, 2020Publication date: April 8, 2021Inventors: Jawaharlal TANGUDU, Pankaj GUPTA, Sreenath Narayanan POTTY, Ajai PAULOSE, Chandrasekhar SRIRAM, Mahesh Ravi VARMA, Shabbar Abbasi VEJLANI, Neeraj SHRIVASTAVA, Himanshu VARSHNEY, Divyeshkumar Mahendrabhai PATEL, Raju Kharataram CHAUDHARI
-
Publication number: 20210091778Abstract: In described examples, a switched capacitor circuit includes an amplifier that generates a first output signal in response to a first sampled input signal. A second sampling circuit is coupled to the amplifier and generates an output signal in response to the first output signal. A first current boost circuit is coupled to the amplifier and the second sampling circuit and provides current to the second sampling circuit when the first output signal is below a first threshold. A second current boost circuit is coupled to the amplifier and the second sampling circuit and receives current from the second sampling circuit when the first output signal is above a second threshold.Type: ApplicationFiled: September 19, 2019Publication date: March 25, 2021Inventors: Neeraj Shrivastava, Sai Aditya Nurani
-
Patent number: 10930362Abstract: A one-time write, read-only memory for storing trimming parameters includes an address pointer table, a fixed packet portion, and a flexible packet portion. The fixed packet portion includes one or more fixed packets, each fixed packet including trimming parameters for a component identified for trimming during a design phase. The flexible packet portion includes one or more flexible packets of different types. Each flexible packet includes trimming parameters for a component identified for trimming after the design phase. One packet type includes a length section and a number of fields equal to a value stored in the length section. Each field includes an address, a trimming parameter, and a mask. Another packet type includes trimming parameters associated with operands in operating instructions for a microcontroller, where the operands include an address and a mask.Type: GrantFiled: June 30, 2020Date of Patent: February 23, 2021Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Aravind Ganesan, Jaiganesh Balakrishnan, Nagarajan Viswanathan, Yeswanth Guntupalli, Ajai Paulose, Mathews John, Jagannathan Venkataraman, Neeraj Shrivastava
-
Publication number: 20200327950Abstract: A one-time write, read-only memory for storing trimming parameters includes an address pointer table, a fixed packet portion, and a flexible packet portion. The fixed packet portion includes one or more fixed packets, each fixed packet including trimming parameters for a component identified for trimming during a design phase. The flexible packet portion includes one or more flexible packets of different types. Each flexible packet includes trimming parameters for a component identified for trimming after the design phase. One packet type includes a length section and a number of fields equal to a value stored in the length section. Each field includes an address, a trimming parameter, and a mask. Another packet type includes trimming parameters associated with operands in operating instructions for a microcontroller, where the operands include an address and a mask.Type: ApplicationFiled: June 30, 2020Publication date: October 15, 2020Inventors: Aravind GANESAN, Jaiganesh BALAKRISHNAN, Nagarajan VISWANATHAN, Yeswanth GUNTUPALLI, Ajai PAULOSE, Mathews JOHN, Jagannathan VENKATARAMAN, Neeraj SHRIVASTAVA
-
Patent number: 10741268Abstract: A one-time write, read-only memory for storing trimming parameters includes an address pointer table, a fixed packet portion, and a flexible packet portion. The fixed packet portion includes one or more fixed packets, each fixed packet including trimming parameters for a component identified for trimming during a design phase. The flexible packet portion includes one or more flexible packets of different types. Each flexible packet includes trimming parameters for a component identified for trimming after the design phase. One packet type includes a length section and a number of fields equal to a value stored in the length section. Each field includes an address, a trimming parameter, and a mask. Another packet type includes trimming parameters associated with operands in operating instructions for a microcontroller, where the operands include an address and a mask.Type: GrantFiled: December 28, 2018Date of Patent: August 11, 2020Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Aravind Ganesan, Jaiganesh Balakrishnan, Nagarajan Viswanathan, Yeswanth Guntupalli, Ajai Paulose, Mathews John, Jagannathan Venkataraman, Neeraj Shrivastava