Patents by Inventor Neha M. Patel

Neha M. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11784150
    Abstract: An integrated circuit package is disclosed. The integrated circuit package comprises a first integrated circuit die and a second integrated circuit die. The integrated circuit package further includes a substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the substrate. The substrate includes an interconnect bridge embedded within the substrate, wherein the interconnect bridge includes at least one metal trace component, wherein the metal trace component includes rounded corners on a bottom portion of the metal trace component.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: October 10, 2023
    Assignee: Intel Corporation
    Inventors: Dae-Woo Kim, Ajay Jain, Neha M. Patel, Rodrick J. Hendricks, Sujit Sharan
  • Publication number: 20220285306
    Abstract: An integrated circuit package is disclosed. The integrated circuit package comprises a first integrated circuit die and a second integrated circuit die. The integrated circuit package further includes a substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the substrate. The substrate includes an interconnect bridge embedded within the substrate, wherein the interconnect bridge includes at least one metal trace component, wherein the metal trace component includes rounded corners on a bottom portion of the metal trace component.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 8, 2022
    Inventors: Dae-Woo KIM, Ajay JAIN, Neha M. PATEL, Rodrick J. HENDRICKS, Sujit SHARAN
  • Patent number: 11380643
    Abstract: An integrated circuit package is disclosed. The integrated circuit package comprises a first integrated circuit die and a second integrated circuit die. The integrated circuit package further includes a substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the substrate. The substrate includes an interconnect bridge embedded within the substrate, wherein the interconnect bridge includes at least one metal trace component, wherein the metal trace component includes rounded corners on a bottom portion of the metal trace component.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: July 5, 2022
    Assignee: Intel Corporation
    Inventors: Dae-Woo Kim, Ajay Jain, Neha M. Patel, Rodrick J. Hendricks, Sujit Sharan
  • Publication number: 20200402940
    Abstract: An integrated circuit package is disclosed. The integrated circuit package comprises a first integrated circuit die and a second integrated circuit die. The integrated circuit package further includes a substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the substrate. The substrate includes an interconnect bridge embedded within the substrate, wherein the interconnect bridge includes at least one metal trace component, wherein the metal trace component includes rounded corners on a bottom portion of the metal trace component.
    Type: Application
    Filed: September 1, 2020
    Publication date: December 24, 2020
    Inventors: Dae-Woo KIM, Ajay JAIN, Neha M. PATEL, Rodrick J. HENDRICKS, Sujit SHARAN
  • Patent number: 10797014
    Abstract: An integrated circuit package is disclosed. The integrated circuit package comprises a first integrated circuit die and a second integrated circuit die. The integrated circuit package further includes a substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the substrate. The substrate includes an interconnect bridge embedded within the substrate, wherein the interconnect bridge includes at least one metal trace component, wherein the metal trace component includes rounded corners on a bottom portion of the metal trace component.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: October 6, 2020
    Assignee: Intel Corporation
    Inventors: Dae-Woo Kim, Ajay Jain, Neha M. Patel, Rodrick J. Hendricks, Sujit Sharan
  • Patent number: 10515914
    Abstract: Foundation layers and methods of forming a foundation layer are described. Die pads are formed over a die. A dielectric layer is formed over die pads and the die. The dielectric layer is then recessed to expose top portions of the die pads. A first plurality of sintered conductive vias are formed over the die pads. The first sintered conductive vias are coupled to at least one of the die pads. In addition, a photoresist layer may be formed over the dielectric layer and the top portions of the die pads. Via openings are formed in the photoresist layer. A second plurality of sintered conductive vias may then be formed over the first sintered conductive vias to form a plurality of sintered conductive lines. Each of the first and second sintered conductive vias are formed with a liquid phase sintering (LPS) solder paste.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: December 24, 2019
    Assignee: Intel Corporation
    Inventors: Mihir A. Oka, Ken P. Hackenberg, Vijay Krishnan (Vijay) Subramanian, Neha M. Patel, Nachiket R. Raravikar
  • Publication number: 20190157232
    Abstract: An integrated circuit package is disclosed. The integrated circuit package comprises a first integrated circuit die and a second integrated circuit die. The integrated circuit package further includes a substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the substrate. The substrate includes an interconnect bridge embedded within the substrate, wherein the interconnect bridge includes at least one metal trace component, wherein the metal trace component includes rounded corners on a bottom portion of the metal trace component.
    Type: Application
    Filed: August 16, 2016
    Publication date: May 23, 2019
    Inventors: Dae-Wood Kim, Ajay Jain, Neha M. Patel, Rodrick J. Hendricks, Sujit Sharan
  • Publication number: 20190157225
    Abstract: Foundation layers and methods of forming a foundation layer are described. Die pads are formed over a die. A dielectric layer is formed over die pads and the die. The dielectric layer is then recessed to expose top portions of the die pads. A first plurality of sintered conductive vias are formed over the die pads. The first sintered conductive vias are coupled to at least one of the die pads. In addition, a photoresist layer may be formed over the dielectric layer and the top portions of the die pads. Via openings are formed in the photoresist layer. A second plurality of sintered conductive vias may then be formed over the first sintered conductive vias to form a plurality of sintered conductive lines. Each of the first and second sintered conductive vias are formed with a liquid phase sintering (LPS) solder paste.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 23, 2019
    Inventors: Mihir A. OKA, Ken P. HACKENBERG, Vijay Krishnan (Vijay) SUBRAMANIAN, Neha M. PATEL, Nachiket R. RARAVIKAR
  • Patent number: 10224299
    Abstract: Foundation layers and methods of forming a foundation layer are described. Die pads are formed over a die. A dielectric layer is formed over die pads and the die. The dielectric layer is then recessed to expose top portions of the die pads. A first plurality of sintered conductive vias are formed over the die pads. The first sintered conductive vias are coupled to at least one of the die pads. In addition, a photoresist layer may be formed over the dielectric layer and the top portions of the die pads. Via openings are formed in the photoresist layer. A second plurality of sintered conductive vias may then be formed over the first sintered conductive vias to form a plurality of sintered conductive lines. Each of the first and second sintered conductive vias are formed with a liquid phase sintering (LPS) solder paste.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: March 5, 2019
    Assignee: Intel Corporation
    Inventors: Mihir A. Oka, Ken P. Hackenberg, Vijay Krishnan (Vijay) Subramanian, Neha M. Patel, Nachiket R. Raravikar
  • Publication number: 20180190604
    Abstract: Foundation layers and methods of forming a foundation layer are described. Die pads are formed over a die. A dielectric layer is formed over die pads and the die. The dielectric layer is then recessed to expose top portions of the die pads. A first plurality of sintered conductive vias are formed over the die pads. The first sintered conductive vias are coupled to at least one of the die pads. In addition, a photoresist layer may be formed over the dielectric layer and the top portions of the die pads. Via openings are formed in the photoresist layer. A second plurality of sintered conductive vias may then be formed over the first sintered conductive vias to form a plurality of sintered conductive lines. Each of the first and second sintered conductive vias are formed with a liquid phase sintering (LPS) solder paste.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Inventors: Mihir A. OKA, Ken P. HACKENBERG, Vijay Krishnan (Vijay) SUBRAMANIAN, Neha M. PATEL, Nachiket R. RARAVIKAR
  • Publication number: 20140013855
    Abstract: A deflection sensor is disclosed herein. The deflection sensor includes a nanotube film adjacent to a substrate, and first and second contacts electrically connectable with the nanotube film. Methods of making and using the deflection sensor are also disclosed.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 16, 2014
    Inventors: Mohammad M. FARAHANI, Vladimir Noveski, Neha M. Patel, Nachiket R. Raravikar
  • Patent number: 8586393
    Abstract: A stress sensor is disclosed herein. The stress sensor includes a plurality of carbon nanotubes in a substrate, and first and second contacts electrically connectable with the plurality of carbon nanotubes. Methods of making and using the stress sensor are also disclosed.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 19, 2013
    Assignee: Intel Corporation
    Inventors: Mohammad M. Farahani, Vladimir Noveski, Neha M. Patel, Nachiket R. Raravikar
  • Publication number: 20120193734
    Abstract: A stress sensor is disclosed herein. The stress sensor includes a plurality of carbon nanotubes in a substrate, and first and second contacts electrically connectable with the plurality of carbon nanotubes. Methods of making and using the stress sensor are also disclosed.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 2, 2012
    Applicant: Intel Corporation
    Inventors: Mohammad M. Farahani, Vladimir Noveski, Neha M. Patel, Nachiket R. Raravikar
  • Patent number: 8174084
    Abstract: A stress sensor is disclosed herein. The stress sensor includes a plurality of carbon nanotubes in a substrate, and first and second contacts electrically connectable with the plurality of carbon nanotubes. Methods of making and using the stress sensor are also disclosed.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: May 8, 2012
    Assignee: Intel Corporation
    Inventors: Mohammad M. Farahani, Vladimir Noveski, Neha M. Patel, Nachiket R. Raravikar
  • Patent number: 7553681
    Abstract: An embodiment of the present invention is a technique to form stress sensors on a package in situ. A first array of carbon nanotubes (CNTs) aligned in a first orientation is deposited at a first location on a substrate or a die in a wafer. The first array is intercalated with polymer. The first polymer-intercalated array is covered with a protective layer. A second array of CNTs aligned in a second orientation is deposited at a second location on the substrate or the die. The second array is intercalated with polymer.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: June 30, 2009
    Assignee: Intel Corporation
    Inventors: Nachiket R. Raravikar, Neha M. Patel
  • Publication number: 20080067619
    Abstract: A stress sensor is disclosed herein. The stress sensor includes a plurality of carbon nanotubes in a substrate, and first and second contacts electrically connectable with the plurality of carbon nanotubes. Methods of making and using the stress sensor are also disclosed.
    Type: Application
    Filed: September 19, 2006
    Publication date: March 20, 2008
    Inventors: Mohammad M. Farahani, Vladimir Noveski, Neha M. Patel, Nachiket R. Raravikar