Patents by Inventor Neil A. Gershenfeld
Neil A. Gershenfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11001319Abstract: A class of robots specifically adapted to climb periodic lattices. These “relative robots” are designed for a specific lattice structure and use the regularity of the structure to simplify path planning, align with minimal feedback, and reduce the number of degrees of freedom (DOF) required to locomote. These robots can perform vital inspection and repair tasks within the structure that larger truss construction robots cannot perform without modifying the structure. A particular embodiment is a robot designed to traverse a cubooctahedral (CubOct) cellular solids lattice using only two motions: climbing and turning.Type: GrantFiled: September 27, 2018Date of Patent: May 11, 2021Assignees: Massachusetts Institute of Technology, United States of America, as Represented by the Administrator of NASAInventors: Benjamin Jenett, Daniel Cellucci, Kenneth Cheung, Neil Gershenfeld
-
Publication number: 20200387657Abstract: A method of producing inductive sensors, including LVDTs and inductive encoders, manufactured by plotting fine wire onto a planar substrate. A sensor is constructed using a computer-controlled machine to place wire onto a planar adhesive substrate. This substrate forms a predictable and uniform surface to deposit each turn of wire, and so the placement accuracy is considerably better than conventional coil winding. This planar substrate can then be manipulated into a desired three-dimensional shape (e.g., by folding, rolling, corrugating, winding, etc.), carrying the wire along with it. In particular, the same CNC machine used to place the wire can be used to cut, crease, score, or otherwise pattern the substrate to facilitate the three-dimensional arrangement.Type: ApplicationFiled: May 26, 2020Publication date: December 10, 2020Applicant: Massachusetts Institute of TechnologyInventors: Samuel E. Calisch, Neil A. Gershenfeld
-
Publication number: 20200370615Abstract: A method and system of curved crease foldcores as energy absorbers with rule lines can that lie parallel in the flat state. Corrugated sheet is bonded to the foldcore material such that the corrugations align with the ruling. The curved creases are then cut from the corrugated layer. The image of the corrugation lines under the folding motion remains a line, and the corrugated structure survives and reinforces the folding mechanism. The corrugation significantly increases the second area moment of inertia about the crushing direction, while leaving the second area moment of inertia about the perpendicular direction largely unchanged. Under compressive failure, the corrugated foldcore fails progressively, rather than catastrophically. Also, the corrugations enforce the curved crease pattern, allowing the required curved panels to be bent while disallowing other deformations.Type: ApplicationFiled: May 26, 2020Publication date: November 26, 2020Applicant: Massachusetts Institute of TechnologyInventors: Samuel E. Calisch, Neil A. Gershenfeld
-
Patent number: 10800127Abstract: Flexural digital materials are discrete parts that can be assembled into a lattice structure to produce an actuatable structure capable of coordinated reversible spatially-distributed deformation. The structure comprises a set of discrete flexural digital material units assembled according to a lattice geometry, with a majority of the discrete units being connected, or adapted to be connected, to at least two other units according to the geometry. In response to certain types of loading of the structure, a coordinated reversible spatially-distributed deformation of at least part of the structure occurs. The deformation of the structure is due to the shape or material composition of the discrete units, the configuration of connections between the units, and/or the configuration of the lattice geometry. Exemplary types of such actuatable structures include airplane wing sections and robotic leg structures.Type: GrantFiled: November 7, 2017Date of Patent: October 13, 2020Assignee: Massachusetts Institute of TechnologyInventors: Kenneth C. Cheung, Samuel Eli Calisch, Neil A. Gershenfeld
-
Publication number: 20200283121Abstract: A shape-morphing ultralight structure using materials that dramatically increase the efficiency of load-bearing aerostructures that includes a programmable material system applied as a large-scale, ultralight, and conformable (shape-morphing) aeroelastic structure. The use of a modular, lattice-based, ultralight material results in stiffness and density typical of an elastomer. This, combined with a building block-based manufacturing and configuration strategy, enables the rapid realization of new adaptive structures and mechanisms. The heterogeneous design with programmable anisotropy allows for enhanced elastic and global shape deformation in response to external loading, making it useful for tuned fluid-structure interaction. The present invention demonstrates an example application experiment using two building block types for the primary structure of a 4.27 m wingspan aircraft with spatially programed elastic shape morphing to increase aerodynamic efficiency.Type: ApplicationFiled: March 9, 2020Publication date: September 10, 2020Applicant: Massachusetts Institute of TechnologyInventors: Benjamin Eric Janett, Neil Gershenfeld, Sean Swei, Nicholas Cramer, Kenneth Cheung
-
Patent number: 10710698Abstract: A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure.Type: GrantFiled: November 1, 2016Date of Patent: July 14, 2020Assignee: Massachusetts Institute of TechnologyInventors: Matthew Eli Carney, Benjamin Jenett, Neil Gershenfeld
-
Patent number: 10625424Abstract: A machine that is capable of assembling a copy of itself from a feedstock of parts is described. The machine operates on a lattice or grid on which it is able to move and from which it receives power and control signals. The machine (assembler) is composed of modules that each perform some functionality. In the simplest case, only three module types are needed: a linear step module, a gripper, and an anchor. The linear step module is capable of moving from one lattice location to the next, the gripper module is capable of gripping other modules, and the anchor module is capable of attaching the machine to the grid. With these three primitives it is possible for this simple machine to move on the grid using inchworm-like motions, pick up other modules, and assemble a copy of itself.Type: GrantFiled: October 31, 2016Date of Patent: April 21, 2020Assignee: Massachusetts Institute of TechnologInventors: William Kai Langford, Amanda Ghassaei, Neil Gershenfeld
-
Patent number: 10576701Abstract: A process for producing a composite part includes (a) applying a loose carbon filament to a receiving portion of a first mold piece; (b) reversibly coupling the first mold piece with at least a second mold piece to form a first mold layer, wherein an interior region of the first mold layer includes a pocket configured to receive a curable resin, the pocket having a shape of the composite part; (c) infusing the curable resin into the pocket; and (d) curing the resin to form the composite part.Type: GrantFiled: December 7, 2015Date of Patent: March 3, 2020Assignee: Massachusetts Institute of TechnologyInventors: Sam Calisch, Neil Gershenfeld, Spencer Wilson
-
Patent number: 10498342Abstract: A system and method for producing discretely assembled logic blocks where the logic block assemblies are a 3-dimensional representation of the normal digital design hierarchy. The blocks contain embedded logical functions that are built up from only a few basic 2-dimensional parts that are assembled into a 3-dimensional structure that realizes a particular logic or computing element. These structures can be combined to produce more complex digital structures and even processors. The two basic structural parts are a node and a strut with the strut typically including an embedded logic function. These are combined to produce spatially distributed structures.Type: GrantFiled: October 15, 2018Date of Patent: December 3, 2019Assignee: Massachusetts Institute of TechnologyInventors: William Kai Langford, Amanda Ghassaei, Neil Gershenfeld
-
Publication number: 20190225949Abstract: A trans-disciplinary system for cell-free biosynthesis includes a cell-free transcription-translation (TX-TL) tool and modular, generalizable microfluidic architectures. Both components of the system are independently functional and are combinable into a cell-free biosynthesis platform. In the first component, modular plasmid libraries are used to program bacterial cell-free TX-TL systems. Each plasmid holds one gene or operon, and all the genes are controlled by the same promoter, so that the stoichiometry of enzyme synthesis is determined by the stoichiometry of plasmids in the reaction. In the second part, in order to facilitate high throughput mixing and matching of gene units from the modular plasmid libraries, a modular, reconfigurable, flexible, and scalable microfluidic architecture is employed.Type: ApplicationFiled: September 20, 2018Publication date: July 25, 2019Applicants: Massachusetts Institute of Technology, Regents of the University of MinnesotaInventors: Andreas Mershin, Vincent Noireaux, James Francis Pelletier, Neil A. Gershenfeld
-
Publication number: 20190184351Abstract: The invention comprises a novel modular, generalizable meso-micro-nano-fluidic platform apparatus, design and methodology which in exemplary embodiments may be applied in conjunction with a novel external triggering and automation/feedback loop control mechanism deployed via computer to explore the phase space of single or double emulsification for applications including the encapsulation of hydrophilic active pharmacological ingredients (APIs). End use applications include the mass production of particulate encapsulation of hydrophobic or hydrophilic APIs with automatic or user-supervised feedback methodology to control and discover mass production or per-drug customized settings of interest for the manufacture of novel or extant therapeutics.Type: ApplicationFiled: August 2, 2018Publication date: June 20, 2019Applicant: Massachusetts Institute of TechnologyInventors: David Lai, Filippos Touriomousis, Andreas Mershin, Neil Gershenfeld
-
Publication number: 20190190523Abstract: A system and method for producing discretely assembled logic blocks where the logic block assemblies are a 3-dimensional representation of the normal digital design hierarchy. The blocks contain embedded logical functions that are built up from only a few basic 2-dimensional parts that are assembled into a 3-dimensional structure that realizes a particular logic or computing element. These structures can be combined to produce more complex digital structures and even processors. The two basic structural parts are a node and a strut with the strut typically including an embedded logic function. These are combined to produce spatially distributed structures.Type: ApplicationFiled: October 15, 2018Publication date: June 20, 2019Inventors: William Kai Langford, Amanda Ghassaei, Neil Gershenfeld
-
Publication number: 20190189135Abstract: A method for hiding data within cover audio uses a set of sample codebook waveforms that are each assigned a unique representative digit value. A hidden data sequence representing the data is formed from the waveforms by concatenation of the waveforms assigned to the digit values of the data. The sequence is superimposed upon segments of the cover audio at a fractional amplitude. After transmission, the received signal is decompressed if necessary, the hidden data sequence is recovered from the cover audio, and the data is recovered from the hidden data sequence. This may be done by recovering the locations of the codebook waveforms and interpolating the time markers of the locations. The recovered data may be cleaned up by using estimated distances between successive cross-correlations to discard extraneous correlation peaks and sequence recurrence to probabilistically delete overlapping correlation peaks.Type: ApplicationFiled: November 2, 2018Publication date: June 20, 2019Applicant: Massachusetts Institute of TechnologyInventors: Ishwarya Ananthabhotla, Neil Gershenfeld
-
Publication number: 20190146043Abstract: Magnetic load cells that measure force and/or torque are constructed from magnets and one or more arrays of magnetic field sensors. The magnetic field sensors are structured in a tight array where the array is attached to a first portion of a frame. The magnets are operated in pairs polarized in opposition to one-another. In particular, pairs of concentric magnets create sharp field boundaries. The magnets are attached to a second portion of the frame with the magnets separated from the array of field sensors by a small gap. The second portion of the frame is free to displace or rotate in relation to the first portion of the frame when a force or torque is applied to it. The displacement results in a measurable differential change in magnetic field reported by the array that can be sampled and processed to relate to the applied force or torque.Type: ApplicationFiled: November 2, 2018Publication date: May 16, 2019Applicant: Massachusetts Institute of TechnologyInventors: Samuel E. Calisch, Neil A. Gershenfeld
-
Publication number: 20190077030Abstract: A system of flexural, actuating, and semiconducting elements of part-types necessary to assemble actuated robotic systems. These parts are joined with a common interface, interlocking with neighboring parts to form a regular lattice structure. Primary considerations for the design of the part interfaces include ease of assembly and the ability to transfer mechanical loads and electronic signals to neighboring parts. The parts are designed to be assembled vertically so structures can he built incrementally one part at a time. They can be easily fabricated at a range of length-scales using a variety of two-dimensional manufacturing processes. These processes include, for example, stamping and laminating, which enable high-throughput production. The simple mechanical interfaces between parts also enable disassembly allowing for reconfigurability and reuse. The interlocking nature of these assemblies allows loads to be distributed through many parallel load-paths.Type: ApplicationFiled: August 23, 2018Publication date: March 14, 2019Applicant: Massachusetts Institute of TechnologyInventors: William Kai Langford, Amanda Ghassaei, Neil Gershenfeld
-
Patent number: 10155313Abstract: An alternative to additive manufacturing is disclosed, introducing an end-to-end workflow in which discrete building blocks are reversibly joined to produce assemblies called digital materials. Described is the design of the bulk-material building blocks and the devices that are assembled from them. Detailed is the design and implementation of an automated assembler, which takes advantage of the digital material structure to avoid positioning errors within a large tolerance. To generate assembly sequences, a novel CAD/CAM workflow is described for designing, simulating, and assembling digital materials. The structures assembled using this process have been evaluated, showing that the joints perform well under varying conditions and that the assembled structures are functionally precise.Type: GrantFiled: April 22, 2016Date of Patent: December 18, 2018Assignee: Massachusetts Institute of TechnologyInventors: William Kai Langford, Matthew Eli Carney, Benjamin Jenett, Neil Gershenfeld
-
Patent number: 10155314Abstract: A machine that is capable of assembling a copy of itself from a feedstock of parts is described. The machine operates on a lattice or grid on which it is able to move and from which it receives power and control signals. The machine (assembler) is composed of modules that each perform some functionality. In the simplest case, only three module types are needed: a linear step module, a gripper, and an anchor. The linear step module is capable of moving from one lattice location to the next, the gripper module is capable of gripping other modules, and the anchor module is capable of attaching the machine to the grid. With these three primitives it is possible for this simple machine to move on the grid using inchworm-like motions, pick up other modules, and assemble a copy of itself.Type: GrantFiled: May 5, 2016Date of Patent: December 18, 2018Assignee: Massachusetts Institute of TechnologyInventors: William Kai Langford, Amanda Ghassaei, Neil Gershenfeld
-
Patent number: 10145110Abstract: A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, load bearing structure.Type: GrantFiled: July 14, 2017Date of Patent: December 4, 2018Inventors: Matthew Eli Carney, Benjamin Jenett, Neil Gershenfeld
-
Publication number: 20180272588Abstract: Issues with pleat walled honeycombs are solved by replacing polygonal creases with curved creases. As with a conventional straight-walled honeycomb, these strips can be combined into a space-filling honeycomb structure. The benefits of these curved creases are threefold. First, the stress concentrations mentioned above with pleat-walled honeycombs are mitigated. The stress due to finite material thickness is spread more evenly over the crease line, instead of being concentrated at a point, as with pleat walled honeycombs. As a result, the maximal value observed is lower and the adverse effects are reduced. Second, the curved creases also serve to give better control over material properties, and third, the curved crease honeycombs do not require any of the horizontally-running creases. The curves are typically mathematical curves that can be computed algebraically or by solving a differential equation.Type: ApplicationFiled: March 23, 2018Publication date: September 27, 2018Applicant: Massachusetts Institute of TechnologyInventors: Samuel E. Calisch, Neil A. Gershenfeld
-
Patent number: 10046820Abstract: A robotic platform for traversing and manipulating a modular 3D lattice structure is described. The robot is designed specifically for its tasks within a structured environment, and is simplified in terms of its numbers of degrees of freedom (DOF). This allows for simpler controls and a reduction of mass and cost. Designing the robot relative to the environment in which it operates results in a specific type of robot called a “relative robot”. Depending on the task and environment, there can be a number of relative robots. This invention describes a bipedal robot which can locomote across a periodic lattice structure made of building block parts. The robot is able to handle, manipulate, and transport these blocks when there is more than one robot. Based on a general inchworm design, the robot has added functionality while retaining minimal complexity, and can perform numerous maneuvers for increased speed, reach, and placement.Type: GrantFiled: June 26, 2017Date of Patent: August 14, 2018Assignee: Massachusetts Institute for TechnologyInventors: Benjamin Jenett, Kenneth Cheung, Neil Gershenfeld