Patents by Inventor Neil A. King

Neil A. King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240038331
    Abstract: Synthetic nanostructures, proteins that are useful, for example, in making synthetic nanostructures, and methods for designing such synthetic nanostructures are disclosed herein.
    Type: Application
    Filed: September 1, 2023
    Publication date: February 1, 2024
    Inventors: David BAKER, Neil KING, Jacob BALE, William SHEFFLER
  • Patent number: 11840668
    Abstract: An integrated process for the production of a useful liquid hydrocarbon product comprises: feeding a gasification zone with an oxygen-containing feed and a first carbonaceous feedstock comprising waste materials and/or biomass, gasifying the first carbonaceous feedstock in the gasification zone to produce first synthesis gas, partially oxidising the first synthesis gas in a partial oxidation zone to generate partially oxidised synthesis gas, combining at least a portion of the first synthesis gas and/or the partially oxidised synthesis gas and at least a portion of electrolysis hydrogen obtained from an electrolyser in an amount to achieve the desired hydrogen to carbon monoxide molar ratio of from about 1.5:1 to about 2.5:1, and to generate a blended synthesis gas, wherein the electrolyser operates using green electricity; and subjecting at least a portion of the blended synthesis gas to a conversion process effective to produce the liquid hydrocarbon product.
    Type: Grant
    Filed: January 3, 2023
    Date of Patent: December 12, 2023
    Assignee: Velocys Technologies Ltd
    Inventors: Ivan Greager, Roger Harris, Rudolph Havenga, Neil King
  • Publication number: 20230313167
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Application
    Filed: February 24, 2023
    Publication date: October 5, 2023
    Inventors: Neil King, Wesley Sundquist, Joerg Votteler, Yang Hsia, David Baker, Jacob Bale, Marc Lajoie, Gabriel Butterfield, Elizabeth Gray, Daniel Stetson
  • Patent number: 11771755
    Abstract: Nanostructures and nanostructure-based vaccines that display antigens capable of eliciting immune responses to infectious agents such as bacteria, viruses, and pathogens are provided. Some vaccines are useful for preventing or decreasing the severity of infection with an infectious agent, including, for example and without limitation, lyme disease, pertussis, herpes virus, orthomyxovirus, paramyxovirus, pneumovirus, filovirus, flavivirus, reovirus, retrovirus, meningococcus, or malaria. The antigens may be attached to the core of the nanostructure either non-covalently or covalently, including as a fusion protein or by other means. Multimeric antigens may optionally be displayed along a symmetry axis of the nanostructure. Also provided are proteins and nucleic acid molecules encoding such proteins, vaccine compositions, and methods of administration.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 3, 2023
    Assignee: University of Washington
    Inventors: Neil King, David Baker, Lance Stewart, Brooke Fiala, Daniel Ellis, Lauren Carter, Rashmi Ravichandran, George Ueda, Jorge Fallas, Una Nattermann
  • Publication number: 20230233707
    Abstract: Antibody particles are disclosed comprising polypeptides comprising an (Fc) binding domain, a helical polypeptide monomer, and an oligomer domain, and either Tie2 antibodies or dimers, or tumor necrosis factor receptor superfamily antibodies, and uses thereof.
    Type: Application
    Filed: June 7, 2021
    Publication date: July 27, 2023
    Inventors: George UEDA, James LAZAROVITS, Jorge FALLAS, David BAKER, Hannele RUOHOLA-BAKER, Robert DIVINE, Yan (Blair) Ting ZHAO, Julie MATHIEU, Neil KING, Marti TOOLEY
  • Publication number: 20230135142
    Abstract: An integrated process for the production of a useful liquid hydrocarbon product comprises: feeding a gasification zone with an oxygen-containing feed and a first carbonaceous feedstock comprising waste materials and/or biomass, gasifying the first carbonaceous feedstock in the gasification zone to produce first synthesis gas, partially oxidising the first synthesis gas in a partial oxidation zone to generate partially oxidised synthesis gas, combining at least a portion of the first synthesis gas and/or the partially oxidised synthesis gas and at least a portion of electrolysis hydrogen obtained from an electrolyser in an amount to achieve the desired hydrogen to carbon monoxide molar ratio of from about 1.5:1 to about 2.5:1, and to generate a blended synthesis gas, wherein the electrolyser operates using green electricity; and subjecting at least a portion of the blended synthesis gas to a conversion process effective to produce the liquid hydrocarbon product.
    Type: Application
    Filed: January 3, 2023
    Publication date: May 4, 2023
    Inventors: Ivan GREAGER, Roger HARRIS, Rudolph HAVENGA, Neil KING
  • Patent number: 11572512
    Abstract: An integrated process for the production of a useful liquid hydrocarbon product comprises: feeding a gasification zone with an oxygen-containing feed and a first carbonaceous feedstock comprising waste materials and/or biomass, gasifying the first carbonaceous feedstock in the gasification zone to produce first synthesis gas, partially oxidising the first synthesis gas in a partial oxidation zone to generate partially oxidised synthesis gas, combining at least a portion of the first synthesis gas and/or the partially oxidised synthesis gas and at least a portion of electrolysis hydrogen obtained from an electrolyser in an amount to achieve the desired hydrogen to carbon monoxide molar ratio of from about 1.5:1 to about 2.5:1, and to generate a blended synthesis gas, wherein the electrolyser operates using green electricity; and subjecting at least a portion of the blended synthesis gas to a conversion process effective to produce the liquid hydrocarbon product.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: February 7, 2023
    Assignee: Velocys Technologies Ltd.
    Inventors: Ivan Greager, Roger Harris, Rudolph Havenga, Neil King
  • Publication number: 20220325279
    Abstract: Provided herein are compositions and methods comprising mutated coronavirus “S” spike proteins or receptor binding domains thereof that have an increased expression level, yield and stability compared to its corresponding native or wild-type coronavirus spike protein under the same expression, culture or storage conditions. These mutated spike proteins can be used for generating a protein-based vaccine against one or more coronaviruses.
    Type: Application
    Filed: December 28, 2021
    Publication date: October 13, 2022
    Applicants: UNIVERSITY OF WASHINGTON, FRED HUTCHINSON CANCER RESEARCH CENTER
    Inventors: Daniel ELLIS, Neil KING, Jesse BLOOM, Tyler STARR, Allison GREANEY
  • Patent number: 11419264
    Abstract: A lawn mower according to the present invention comprises two swiveling rear wheels, each underneath a dome built into a deck of the lawn mower. The rear wheels may rotate on a rotational axis within a bracket. The bracket does not rotate while the rear wheel rotates. The rear wheels may also swivel within their corresponding dome on a swivel axis, perpendicular to the rotational axis. The swivel and rotation of the rear wheel enable a pivoting of the lawn mower with a front wheel as the fulcrum of said pivot.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: August 23, 2022
    Inventor: Richard Neil King
  • Publication number: 20220112429
    Abstract: An integrated process for the production of a useful liquid hydrocarbon product comprises: feeding a gasification zone with an oxygen-containing feed and a first carbonaceous feedstock comprising waste materials and/or biomass, gasifying the first carbonaceous feedstock in the gasification zone to produce first synthesis gas, partially oxidising the first synthesis gas in a partial oxidation zone to generate partially oxidised synthesis gas, combining at least a portion of the first synthesis gas and/or the partially oxidised synthesis gas and at least a portion of electrolysis hydrogen obtained from an electrolyser in an amount to achieve the desired hydrogen to carbon monoxide molar ratio of from about 1.5:1 to about 2.5:1, and to generate a blended synthesis gas, wherein the electrolyser operates using green electricity; and subjecting at least a portion of the blended synthesis gas to a conversion process effective to produce the liquid hydrocarbon product.
    Type: Application
    Filed: October 12, 2021
    Publication date: April 14, 2022
    Inventors: Ivan GREAGER, Roger HARRIS, Rudolph HAVENGA, Neil KING
  • Publication number: 20210340519
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Application
    Filed: June 2, 2021
    Publication date: November 4, 2021
    Inventors: Neil KING, Wesley SUNDQUIST, Joerg VOTTELER, Yang HSIA, David BAKER, Jacob BALE, Marc LAJOIE, Gabriel BUTTERFIELD, Elizabeth GRAY, Daniel STETSON
  • Patent number: 11028383
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 8, 2021
    Assignees: University of Washington, University of Utah Research Foundation
    Inventors: Neil King, Wesley Sundquist, Joerg Votteler, Yang Hsia, David Baker, Jacob Bale, Marc Lajoie, Gabriel Butterfield, Elizabeth Gray, Daniel Stetson
  • Publication number: 20200397886
    Abstract: The present disclosure provides nanostructures and nanostructure-based vaccines. Some nanostructures of the present disclosure display antigens capable of eliciting immune responses to infectious agents such as bacteria, viruses, and pathogens. Some vaccines of the present disclosure are useful for preventing or decreasing the severity of infection with an infectious agent, including, for example and without limitation, lyme disease, pertussis, herpes virus, orthomyxovirus, paramyxovirus, pneumovirus, filovirus, flavivirus, reovirus, retrovirus, meningococcus, or malaria. The antigens may be attached to the core of the nanostructure either non-covalently or covalently, including as a fusion protein or by other means disclosed herein. Multimeric antigens may optionally be displayed along a symmetry axis of the nanostructure. Also provided are proteins and nucleic acid molecules encoding such proteins, vaccine compositions, and methods of administration.
    Type: Application
    Filed: February 28, 2019
    Publication date: December 24, 2020
    Inventors: Neil KING, David BAKER, Lance STEWART, Brooke FIALA, Daniel ELLIS, Lauren CARTER, Rashmi RAVICHANDRAN, George UEDA, Jorge FALLAS, Una NATTERMAN
  • Publication number: 20200224186
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Application
    Filed: November 6, 2019
    Publication date: July 16, 2020
    Inventors: Neil KING, Wesley SUNDQUIST, Joerg VOTTELER, Yang HSIA, David BAKER, Jacob BALE, Marc LAJOIE, Gabriel BUTTERFIELD, Elizabeth GRAY, Daniel STETSON
  • Patent number: 10501733
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: December 10, 2019
    Assignees: University of Washington, University of Utah Research Foundation
    Inventors: Neil King, Wesley Sundquist, Joerg Votteler, Yang Hsia, David Baker, Jacob Bale, Marc Lajoie, Gabriel Butterfield, Elizabeth Gray, Daniel Stetson
  • Publication number: 20190341124
    Abstract: Synthetic nanostructures, proteins that are useful, for example, in making synthetic nanostructures, and methods for designing such synthetic nanostructures are disclosed herein.
    Type: Application
    Filed: February 8, 2019
    Publication date: November 7, 2019
    Inventors: David BAKER, Neil KING, Jacob BALE, William SHEFFLER
  • Patent number: 10248758
    Abstract: Synthetic nanostructures, proteins that are useful, for example, in making synthetic nanostructures, and methods for designing such synthetic nanostructures are disclosed herein.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: April 2, 2019
    Assignee: University of Washington Through its Center for Commercialization
    Inventors: David Baker, Neil King, Jacob Bale, William Sheffler
  • Publication number: 20180030429
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Application
    Filed: February 29, 2016
    Publication date: February 1, 2018
    Inventors: Neil KING, Wesley SUNDQUIST, Joerg VOTTELER, Yang HSIA, David BAKER, Jacob BALE, Marc LAJOIE, Gabriel BUTTERFIELD, Elizabeth GRAY, Daniel STETSON
  • Publication number: 20150356240
    Abstract: Synthetic nanostructures, proteins that are useful, for example, in making synthetic nanostructures, and methods for designing such synthetic nanostructures are disclosed herein.
    Type: Application
    Filed: February 7, 2014
    Publication date: December 10, 2015
    Applicant: University of Washington Through It's Center For Commercialization
    Inventors: David BAKER, Neil KING, Jacob BALE, William SHEFFLER
  • Patent number: 8969521
    Abstract: Methods and systems for computationally designing self-assembling polypeptides are disclosed. A representation of a docked configuration of a symmetric protein architecture can be determined by a computing device configured to computationally symmetrically dock representations of protein building blocks within a representation of a symmetric protein architecture, where symmetrically docking a representation of a particular protein building block can include determining a configuration of the protein building blocks in three-dimensional space within the symmetric protein architecture configured to generate interfaces between building blocks suitable for computational protein interface design. The amino acid sequence of the docked protein building blocks can be computationally modified to specify protein-protein interfaces between the plurality of protein building blocks that are energetically favorable to drive self-assembly of a protein that includes the modified amino acid sequence.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 3, 2015
    Assignee: University of Washington Through its Center for Commercialization
    Inventors: David Baker, Neil King, William Sheffler, Todd Yeates