Patents by Inventor Neil A. Stephenson

Neil A. Stephenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180058758
    Abstract: An adsorption process for xenon recovery from a cryogenic liquid or gas stream is described wherein a bed of adsorbent is contacted with the aforementioned xenon containing liquid or gas stream and adsorbs the xenon selectively from this fluid stream. The adsorption bed is operated to at least near full breakthrough with xenon to enable a deep rejection of other stream components, prior to regeneration using the temperature swing method. Operating the adsorption bed to near full breakthrough with xenon, prior to regeneration, enables production of a high purity product from the adsorption bed and further enables oxygen to be used safely as a purge gas, even in cases where hydrocarbons are co-present in the feed stream.
    Type: Application
    Filed: August 23, 2016
    Publication date: March 1, 2018
    Inventors: Philip A. Barrett, Neil A. Stephenson, Nicholas R. Stuckert, Michael Freiert, Hai Du, Rachael A. Masin, Garrett R. Swindlehurst
  • Patent number: 9772139
    Abstract: The invention relates to a process for removing oxygen from liquid argon using a TSA (temperature swing adsorption) cyclical process that includes cooling an adsorbent bed to sustain argon in a liquid phase; supplying the adsorbent bed with a liquid argon feed that is contaminated with oxygen and purifying the liquid argon thereby producing an argon product with less oxygen contaminant than is in the initial liquid argon feed; draining the purified residual liquid argon product and sending purified argon out of the adsorbent bed. Regeneration of specially prepared adsorbent allows the adsorbent bed to warm up to temperatures that preclude the use of requiring either vacuum or evacuation of adsorbent from the bed.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: September 26, 2017
    Assignee: Praxair Technology, Inc.
    Inventors: Persefoni E. Kechagia, Neil A. Stephenson, Philip A. Barrett, Hai Du, Steven J. Pontonio
  • Patent number: 9676629
    Abstract: The present invention generally relates to a method to enhance heat transfer in the temperature swing adsorption process (TSA) and to an intensified TSA process for gas/liquid purification or bulk separation. Helium is designed as the heat carrier media to directly bring heat/cool to the adsorbent bed during the TSA cycling process. With helium's superior heat conductivity, the time consuming regeneration steps (warming, regeneration and precooling) of TSA process can be significantly reduced and allowing for the TSA process to be intensified.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: June 13, 2017
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Hai Du, Scot E. Jaynes, Steven R. Falta, Neil A. Stephenson
  • Publication number: 20170030639
    Abstract: A method and apparatus for argon recovery in which an impure argon stream is separated from air within a cryogenic air separation unit having a divided wall argon rejection/rectification column. The resulting argon stream is subsequently recovered and purified within an integrated pressure swing adsorption system to produce product grade argon.
    Type: Application
    Filed: March 1, 2016
    Publication date: February 2, 2017
    Inventors: Hai Du, Neil M. Prosser, Yang Luo, Neil A. Stephenson
  • Publication number: 20170030642
    Abstract: A method and apparatus for argon recovery in which an impure argon stream is separated from air within a cryogenic air separation unit having a divided wall argon rejection/rectification column. The resulting argon stream is subsequently recovered and purified within an integrated pressure swing adsorption system to produce product grade argon.
    Type: Application
    Filed: March 1, 2016
    Publication date: February 2, 2017
    Inventors: Hai Du, Neil M. Prosser, Yang Luo, Neil A. Stephenson
  • Publication number: 20170030640
    Abstract: A method and apparatus for increasing argon recovery in which an impure argon stream is separated from air within a cryogenic air separation unit and purified within an integrated, multi-stage pressure swing adsorption system to produce product grade argon with high argon recovery levels.
    Type: Application
    Filed: March 1, 2016
    Publication date: February 2, 2017
    Inventors: Hai Du, Neil A. Stephenson, Neil M. Prosser
  • Publication number: 20160362298
    Abstract: The present invention generally relates to a method to enhance heat transfer in the temperature swing adsorption process (TSA) and to an intensified TSA process for gas/liquid purification or bulk separation. Helium is designed as the heat carrier media to directly bring heat/cool to the adsorbent bed during the TSA cycling process. With helium's superior heat conductivity, the time consuming regeneration steps (warming, regeneration and precooling) of TSA process can be significantly reduced and allowing for the TSA process to be intensified.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 15, 2016
    Inventors: Hai Du, Scot E. Jaynes, Steven R. Falta, Neil A. Stephenson
  • Patent number: 9457337
    Abstract: An optimal material composition that allows for the purification of at least one feed component from a fluid feed stream such that the adsorbent has an oxygen capacity of at least 10 weight percent is described. More specifically, the material is an adsorbent for purification of a fluid feed stream having an oxygen to argon selectivity greater than or equal to a ratio of 3:1 and an oxygen capacity of greater than or equal to 10 weight percent, wherein the oxygen capacity is measured at a pressure in the range of about 9-10 Torr and a temperature of 77 degrees Kelvin after 4 hours of equilibration time and wherein the oxygen to argon selectivity is obtained by dividing the oxygen capacity by the argon capacity of the adsorbent measured at a pressure in the range of about 697-700 Torr and a temperature of 87 degrees Kelvin after 8 hours of equilibration time. The adsorption capacities are measured on a pure component basis.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 4, 2016
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Philip A. Barrett, Steven J. Pontonio, Neil A. Stephenson, Persefoni E. Kechagia
  • Publication number: 20160084571
    Abstract: The invention relates to a process for removing oxygen from liquid argon using a TSA (temperature swing adsorption) cyclical process that includes cooling an adsorbent bed to sustain argon in a liquid phase; supplying the adsorbent bed with a liquid argon feed that is contaminated with oxygen and purifying the liquid argon thereby producing an argon product with less oxygen contaminant than is in the initial liquid argon feed; draining the purified residual liquid argon product and sending purified argon out of the adsorbent bed. Regeneration of specially prepared adsorbent allows the adsorbent bed to warm up to temperatures that preclude the use of requiring either vacuum or evacuation of adsorbent from the bed.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 24, 2016
    Inventors: PERSEFONI E. KECHAGIA, Neil A. Stephenson, Philip A. Barrett, Hai Du, Steven J. Pontonio
  • Patent number: 9222727
    Abstract: The invention relates to a process for removing oxygen from liquid argon using a TSA (temperature swing adsorption) cyclical process that includes cooling an adsorbent bed to sustain argon in a liquid phase; supplying the adsorbent bed with a liquid argon feed that is contaminated with oxygen and purifying the liquid argon thereby producing an argon product with less oxygen contaminant than is in the initial liquid argon feed; draining the purified residual liquid argon product and sending purified argon out of the adsorbent bed. Regeneration of specially prepared adsorbent allows the adsorbent bed to warm up to temperatures that preclude the use of requiring either vacuum or evacuation of adsorbent from the bed.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: December 29, 2015
    Assignee: Praxair Technology, Inc.
    Inventors: Persefoni E. Kechagia, Neil A. Stephenson, Philip A. Barrett, Hai Du, Steven J. Pontonio
  • Publication number: 20140245781
    Abstract: The invention relates to a process for removing oxygen from liquid argon using a TSA (temperature swing adsorption) cyclical process that includes cooling an adsorbent bed to sustain argon in a liquid phase; supplying the adsorbent bed with a liquid argon feed that is contaminated with oxygen and purifying the liquid argon thereby producing an argon product with less oxygen contaminant than is in the initial liquid argon feed; draining the purified residual liquid argon product and sending purified argon out of the adsorbent bed. Regeneration of specially prepared adsorbent allows the adsorbent bed to warm up to temperatures that preclude the use of requiring either vacuum or evacuation of adsorbent from the bed.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Inventors: Persefoni E. Kechagia, Neil A. Stephenson, Philip A. Barrett, Hai Du, Steven J. Pontonio
  • Publication number: 20140249023
    Abstract: An optimal material composition that allows for the purification of at least one feed component from a fluid feed stream such that the adsorbent has an oxygen capacity of at least 10 weight percent is described. More specifically, the material is an adsorbent for purification of a fluid feed stream having an oxygen to argon selectivity greater than or equal to a ratio of 3:1 and an oxygen capacity of greater than or equal to 10 weight percent, wherein the oxygen capacity is measured at a pressure in the range of about 9-10 Torr and a temperature of 77 degrees Kelvin after 4 hours of equilibration time and wherein the oxygen to argon selectivity is obtained by dividing the oxygen capacity by the argon capacity of the adsorbent measured at a pressure in the range of about 697-700 Torr and a temperature of 87 degrees Kelvin after 8 hours of equilibration time. The adsorption capacities are measured on a pure component basis.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Inventors: Philip A. Barrett, Steven J. Pontonio, Neil A. Stephenson, Persefoni E. Kechagia